
Quantum particle in triangular well 

 

    In this note you’ll see a naive attempt to solve the problem of 

a 1D quantum particle in the potential well of the form 

( ) | |V x F x  

    The main problem as always is to find the energy eigenstates, 

which leads to the schroedinger’s time independent equation 
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    The symmetry of the potential allows us to consider 

symmetric (even) or anti-symmetric (odd) state functions. So 

let’s focus on the x>0 region only and solve the equation there. 

Having done that, building the complete answer won’t be 

difficult. 
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    Since the potential is non-negative everywhere, energy 

eigenvalue “E” can’t be negative. So the two following real and 

non-negative quantities can be defined 
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    Simplifying the equation gives 
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    Ofcourse there are so many different ways to solve the 

equation numerically. But the thing we are usually interested in 

is to answer the question “how the energy eigenvalues are 

distributed?”.  And that gives us the courage to try and find a 

series expansion for the answer and convert the differential 

equation to a difference equation which can give us the proper 

values of energy. (as is the case for hydrogen atom and the 

quantum SHO). Having checked the behavior of the equation at 

large values of u we can guess the answer to be of the form 
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    In which v is a function which can be described by a finite 

power series expansion. Deriving the difference equation is a 

little cumbersome and I’m not going to do that here. But the 

important fact is that it fails to reveal energy eigenvalues! 1
st
 

because it’s a 3
rd
 degree difference equation and finding the 

eigenvalues turns out to be almost impossible. 2
nd

 and the more 



important reason is that you need to include half integer powers 

in the series too. These problems encourage us to use the “wag 

tail” method.  

    The basic idea is to find the values of epsilon which 

correspond to normalizable eigenfunctions by solving the 

equation numerically. Using MATLAB and Runge-Kutta 

method we can simply get to the following table of proper 

values of epsilon 

odd even 

3.5752 1.0283 

8.2653 5.8541 

12.9715 10.5822 

17.6803 15.3010 

22.3908 20.0168 

27.1020 24.7312 

31.8135 29.4450 

36.5253 34.1584 

41.2372 38.8716 

45.9492 43.5846 

50.6613 48.297 

55.3734 53.0103 

    Now if you write these values ordered you get 

n ( )n  

1 1.0283 

2 3.5752 

3 5.8541 

4 8.2653 

5 10.5822 



6 12.9710 

7 15.3010 

8 17.6803 

9 20.0168 

10 22.3908 

11 24.7312 

12 27.1020 

13 29.4450 

14 31.8135 

15 34.1584 

16 36.5253 

17 38.8716 

18 41.2372 

19 43.5746 

20 45.9492 

21 48.2975 

22 50.6613 

23 53.0103 

24 55.3734 

    Having taken a glance at the table above we can guess that 

epsilon is growing linearly with n. the linear regression shows 

that the guess was not a bad one indeed. 
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    By translating the results in energy language we have 
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    Which almost solves the problem. Using the relation above 

you can find the expected value of energy at a given 

temperature!  

     


