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1 Introduction

In the years 1939-41 Kolmogorov designated a theory of turbulent flows, (solu-
tions of the incompressible Navier-Stokes equations in the high Reynolds number
regime) and derived quantitative statistical results (The only quantitative re-
sults up to now) based on a minimal set of hypotheses. The following will include
a derivation of Kolmogorov’s four fifths law (The above mentioned quantitative
result).

There were objections to Kolmogorov’s hypotheses in the years after mainly
put forward by Landau; which we shall not go through. Although it is worth
mentioning that in 1962 the corrected picture was achieved by Kolmogorov-
Obukhov known as KO62.

∂tvi + vj∂jvi +∇p− ν∇2vi = fi

∂ivi = 0 or [∂i, vi] = 0

Navier-Stokes equations for incompressible flows
1

2 Scale by scale energy budget diffusion

The energy of the fluid is given by

E =
1

2

∫
vivid

3r⃗

The time derivative of the total energy is

dE

dt
=

∫
vi
∂vi
∂t

d3r⃗

1What we denote by p in what follows or call ’pressure’ is really the physical pressure
normalized by ρ. After all one could always pick his favourite unit systems such that ρ = 1
holds if he wants.
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=

∫
vi(−vj∂jvi − ∂ip+ ν∂j∂jvi + fi)d

3r⃗

using the incompressibility condition [∂i, vi] = 0 we get

dE

dt
=

∫
[−1

2
∂jvivivj − ∂i(pvi) + ν∂j(vi∂jvi)− ν(∂jvi)(∂jvi) + fivi]d

3r⃗

if the energy is to be finite, velocity field must vanish at r → ∞ therefore
the derivatives don’t contribute and we get

dE

dt
=

∫
[−ν(∂jvi)(∂jvi) + fivi]d

3r⃗ (1)

if we define the vorticity vector ωk := εijk∂ivj
the last equation can be rewritten in terms of ωiωi

ωkωk = (εijk∂ivj)(εmnk∂mvn)

= (δimδjn − δinδjm)(∂ivj)(∂mvn)

= (∂ivj)(∂ivj)− (∂ivj)(∂jvi)

= (∂ivj)(∂ivj)− ∂i∂jvivj

the second term is a derivative and hence will disappear via integration. There-
fore

dE

dt
=

∫
[−νω2 + fivi]d

3r⃗ (2)

It will prove useful to work with the Fourier transforms from time to time. We
denote the Fourier transform of a quantity q(r⃗) by Q(k⃗) as follows

Q(k⃗) =
1√
2π

∫
q(r⃗)e−ik⃗.r⃗d3r⃗

V⃗ =
1√
2π

∫
v⃗(r⃗)e−ik⃗.r⃗d3r⃗ (3)

Parseval’s theorem gives

E =
1

2

∫
V ∗
i Vid

3k⃗

and
dE

dt
= −ν

∫
Ω∗

iΩid
3k⃗

= −ν

∫
|ik⃗ × V⃗ |2d3k⃗

= −ν

∫
εijkεmnkkiV

∗
j kmVnd

3k⃗
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incompressibility k⃗.r⃗ = 0 gives

dE

dt
= −ν

∫
k2|V |2d3k⃗

As can be seen there is no contribution to dissipation from the nonlinear
terms. Although if we define EK as follows

EK =

∫
|⃗k|<K

|V (k⃗)|2d3k⃗

To be the energy content in the wavenumbers less than k, there will be a
flow of energy between different wave numbers due to nonlinearities

dEK

dt
= Re[

∫
|⃗k|<K

V ∗
i ∂tVid

3k⃗ ]

∂tVi = {N.L.} − ikiP − νk2Vi + Fi

in which {N.L.} denotes the nonlinear term’s contribution. Substituting the
result we get

dEK

dt
= {N.L.}+Re{

∫
|⃗k|<K

V ∗
i (−ikiP − νk2Vi + Fi)d

3k⃗ }

Since the velocity field is real, we have V ∗(k⃗) = V (−k⃗). This and the
incompressibility condition guarantee that the first term in the integral vanishes.
The second term is the dissipation rate in wavenumbers less than K and the
last one the external work done by external forces in wave numbers less than
K. 2

Now to calculate the nonlinear term, it is easier to compute this term in
the physical space rather than Fourier space. We use the following notation:
For any field quantity q, the symbol q<K (q>K) denotes the output of the ideal
lowpass (highpass) filter with cutoff frequency K and input q. it is clear that
q = q<K + q>K

dEK

dt
|{N.L.} = −

∫
d3r⃗ v⃗<K(r⃗).{v⃗.∇v⃗}<K

= −
∫

d3r⃗ v⃗<K(r⃗)v⃗.∇(v⃗<K + v⃗>K)

2The definition of the two recent quantities is a little different than usual; to compute
the energy (work) content in wavenumbers less than K one does not calculate the Fourier
transform of the local energy (work) instead acts a low pass filter on the first order fields i.e.
velocity, force, etc. and computes the total energy content (work) using the filtered fields.
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The first term vanishes.3 Defining

ΠK :=

∫
v<Ki

vj∂jv
>
Ki

d3r⃗

We get the desired scale by scale energy budget diffusion equation

dEK

dt
+ΠK = DK +WK (4)

in which the last two terms represent the dissipation rate and external in-
jected power respectively.

3 Symmetries of Navier-Stokes equations

Looking at Navier-Stkes homogenous equations there are some transformations
under which a solution remains a solution, these symmetries will help us derive
relations in turbulent flows where the boundary conditions (boundary conditions
obviously break these symmetries) are of less significance.

∂tvi + vj∂jvi + ∂ip− ν∂j∂jvi = 0 (5)

It is worth noting that p in the equation is not an independent variable and is
itself a function of the velocity field v. Although this functionality is intrinsic
in the equation and may be derived by taking both curl and divergences from
Navier-Stokes; hence we will not discuss transformations on p and simply ignore
the variance/invariance of the corresponding term.

3.1 Space-Time translation

It is clear that for a solution vi(r⃗, t), the transformed field vi(r⃗− d⃗, t− τ) is also
a solution.

3.2 Space rotation

Since there is no preferred space direction implicit in the Navier-Stokes, it is
evident that the transformed solution

R−1v⃗(Rr⃗, t)

for any rotation matrix R is also a solution.

3for any divergenceless vector vi∫
uivj∂juidV =

1

2

∫
∂jvjuiuidV = 0
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3.3 A special scaling

Let us re-scale space and time with two different sacalars and ask the solutions
to remain solutions.

r⃗ → λr⃗

t → λ1−ht

and naturally
vi → λhvi

For the Navier-Stokes to remain valid, every term should be multiplied by a
common factor. This condition is only met if

h = −1

And hence a single group of transformations is present corresponding to h = −1
re-scaling of space-time.

3.4 Infinite Re, infinite symmetries

In Kolmogorov’s 1941 papers describing turbulent flows, there is a postulate
stating that in the limit of infinite Reynolds number (equivalently ν → 0) the
scaling symmetry spreads to every h (not only h = −1) hence resulting in an
infinite number of scaling symmetry classes (coresponding to different h values).

4 Probabilistic interpretation through random
processes

4.1 Why a probabilistic description

Providing statistic description of deterministic dynamical systems is useful for
’complicated enough’ systems, like those studied in the window of (classical)
statistical physics with too many variables or systems with chaotic (not to be
defined carefully here) dynamics. Using statistical quantities is legitimate in
the first example simply because we don’t need (or are not able) to track the
evolution of an enormous number of dynamical variables and hence focus on
statistical variables i.e. mean-values. While in the second example randomness
rises from small (but undeniable) uncertainties in the initial state of system
since two close initial conditions can exhibit significant differences in their future
behaviour.

A very simple example of a chaotic dynamical system is the following one-
dimensional discrete time system:

x[t+ 1] = 1− 2
∣∣∣x[t]− 1

2

∣∣∣ x ∈ [0, 1]

Let’s say we measure the initial value x[0] with some uncertainty. The
measurement results in a probability density function for x[0] which we denote
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by f0(x). A typical initial distribution is a gaussian like spike near some value
µ with some finite width. The reader can convince himself that the evolution
of distribution functions is given by

ft+1(x) =
1

2

[
ft
(x
2

)
+ ft

(1− x

2

)]
Or in Fourier series language

a[t+ 1, n] = a[t, 2n]

Where a[t, n]’s are Fourier components of ft(x)

ft(x) =

∞∑
n=0

a[t, n] cos(nπx)

Looking at Fourier components evolution, it is clear that no matter how
narrow the initial value is measured, after some iterations all frequencies but
the DC value tend to zero resulting in a unifom distribution.

This monotone loss of information and convergence to a distribution (uni-
form in this case) leaves us no choice but to study the statistical characteristics
of the limiting distribution.

4.2 Random processes and correlation functions

A random process is defined as a random signal in time (or space-time) in
other words it is a set of random variables labelled with space-time co-ordinates
x(r⃗, t).

The turbulent flow will be regarded as a random process. Both homogeneity
and isotropy will be assumed which means the distribution of random variables
x(r⃗, t) are independent of the space-time labels. Isotropy also implies that the
distributions for velocity are centered.

⟨vi⟩ = 0

We will be interested in the correlation functions which we’ll call structure-
functions to describe the turbulent flow.

T {i}(⃗l) = ⟨δvi1 (⃗l)δvi2 (⃗l) · · · δvip (⃗l)⟩

in which {i} denotes the set of indices and

δvi(⃗l) := vi(r⃗ + l⃗, t)− vi(r⃗, t)

independent of {r⃗, t} because of space-time homogeneity.
A simpler structure function is the longitudinal structure function

S(p)(⃗l) = ⟨(δv⃗(⃗l).ˆ⃗l)p⟩
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or simply
S(p) = ⟨δvp||⟩

Which are only functions of l = |⃗l| only because of isotropy.
It is worth noting in the end that the homogeneity in space-time and the fact

that correlation functions go to zero for large increments in space-time makes
the possibly different time averging, space averaging and ensemble averaging
equivalent. We simply denote all of them by ⟨⟩ symbols.

4.3 Energy distribution

Consider an n diensional homogenous and isotropic random process x (a random
signal in n dimensions). We will show the space-time coordinates with the n
dimensional vector t⃗. Desired is the distribution of the energy content of the
signal x in different frequencies.

Consider a signal w(⃗t) with corresponding Fourier transform

W (ω⃗) =
1

(2π)
n
2

∫
e−iω⃗.⃗tw(⃗t)dnt⃗

We wish to compute the DC value or time average of w given it’s Fourier trans-
formW . It is clear that the DC value will be a function of the near zero behavior
of W only. Since the Fourier transform is linear we need only to examine the
Fourier transform of a pure DC signal w(⃗t) = 1

W (ω⃗) =
1

(2π)
n
2

∫
e−iω⃗.⃗t1dnt⃗

= (2π)
n
2 δ(ω⃗)

hence

⟨w⟩ = 1

(2π)
n
2

lim
Ω→0

∫
|ω⃗|<Ω

W (ω⃗)dnω⃗

An interesting DC value is the 2-point correlation function

g(s⃗) := ⟨x(⃗t)x(⃗t+ s⃗)⟩

The Fourier transform of the product is simply given by the convolution integral

F{x(⃗t)y(⃗t)} =
1

(2π)
n
2
X (⃗.) ∗ Y (⃗.)

where X and Y are the proper Fourrier transforms. Hence

F{x(⃗t)x(⃗t+ s⃗)} =
1

(2π)
n
2
X (⃗.) ∗ [X (⃗.)exp(i⃗..s⃗)]

=
1

(2π)
n
2

∫
dnω⃗′X(ω⃗′)X(ω⃗ − ω⃗′)ei(ω⃗−ω⃗′).s⃗
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therefore

g(s⃗) =
1

(2π)n
lim
Ω→0

∫
|ω⃗|<Ω

dnω⃗

∫
dnω⃗′X(ω⃗′)X(ω⃗ − ω⃗′)ei(ω⃗−ω⃗′).s⃗

Keeping in mind the identity X∗(ω⃗) = X(−ω⃗) we get

g(s⃗) = (2π)
n
2 F−1{|X(ω)|2} (6)

Which is known as Wiener-Khinchin-Einstein formula. This simply states that
the energy distribution function of the random process is proportional to the
Fourier transform of the 2-point correlation function.

Isotropy and homogeneity also give

g(s⃗) = g(s)

|X(ω⃗)|2 = u(ω)

The Wiener-Khinchin-Einstein formula reduces to

g(s) =
2π(n−1

2 )

Γ(n−1
2 )

∫ ∞

0

dωωn−1u(ω)

∫ π

0

cos(ωscos(θ))sinn−2(θ)dθ (7)

for n = 3 (3 dimensional space)

g(s) =
4π

s

∫ ∞

0

ωu(ω)sin(ωs)dω (8)

Of interest is the special case in which energy distribution follows a power law.

u(ω) = Aω−α−n+1 A > 0 4

Although no such energy distribution results in a finite total energy, for α ∈
(1, 3) the structure function ⟨δx(s)2⟩ remains finite. For n = 3 and power law
energy distribution:

⟨δx(s)2⟩ ∝ ωα−1 (9)

As we promised we shall seek a statistical interpretation of observable physi-
cal quantities and rules governing them in turbulent flow regimes. Equipped
with concepts of stochastic processes we can consider the velocity field v⃗ to
be a stochastic process through space and time. The statistical properties are
assumed stationary with respect to space-time co-ordinates.

5 Experimental facts of fully developed turbu-
lence

In this section we’ll meet two experimental laws observed in turbulent flows.

4The tedious looking power is chosen such that the energy density is proportional to ω−α.
The degeneracy of ω will correct the power.
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5.1 Two thirds law

The quantity ⟨δv(l)2⟩ has been measured frequently in different labs and the
proportionality

⟨δv(l)2⟩ ∝ l2/3

has been observed. Comparing with eq. (9) we get

α =
5

3

which is also in good agreement with experimental data. This is called the
two thirds power law.

5.2 Dissipative anomaly

As we derived in the 2nd section it is clear that for non-viscous flows, energy
is conserved. It is also evident from dimensional analysis that flows with the
same Reynolds number should behave in a similar way hence it may be stated
that in the limit of infinite Reynolds numbers, energy is also conserved. The
experimental data suggest otherwise: if we denote the dissipation rate per mass
with ε it is observed from experiments that(

lim
Re→∞

ε
)
> 0 = ε(∞)

i.e. the dissipation rate tends to a finite non-zero value as the Reynolds number
is increased to infinity.

It may be regarded as a consequence of self similarity of the flow since for
self similar objects, a unique length-scale and hence a unique Reynolds number
is not well defined.

6 K415

In his third 1941 turbulence paper Kolmogorov found that an exact relation
can be derived for the third order longitudinal structure function, the average
of the cube of the longitudinal velocity increment. He assumed homogeneity,
isotropy and an additional hypothesis about the finiteness of the energy dissi-
pation. Without any further assumptions he derived the following result from
the Navier-Stokes equation:

Four fifths law. In the limit of infinite Reynolds number, the third order
(longitudinal) structure function of homogenous isotropic turbulence, evaluated
for increments l small compared to the coherency length, is given in terms of
the mean energy dissipation per unit mass ε (assumed to remain finite and
nonvanishing) by

⟨δv3||(l)⟩ = −4

5
εl (10)

5This subsection is quoted from the refrence.
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6.1 Karman-Howarth-Monin relation

Let’s start by taking the dot product of the velocity in two different points r⃗
and r⃗ + l⃗ namely v⃗, v⃗′. For the average of the dot product we have

1

2
∂t⟨v⃗.v⃗′⟩

= ⟨(∂tvi)v′i + vi(∂tv
′
i)⟩

= −1

2
⟨(∂jvivj)v′i⟩ −

1

2
⟨vi(∂jv′iv′j)⟩

−1

2
⟨v′i∂ip⟩ −

1

2
⟨vi∂ip′⟩

+
1

2
⟨fiv′i⟩+

1

2
⟨vif ′

i⟩

+
1

2
ν⟨(∂j∂jvi)v′i⟩+

1

2
ν⟨vi(∂j∂jv′i)⟩

in which all the derivatives are taken in constant l⃗. The pressure terms are
zero according to incompressibility. The external force terms can be written as

1

2
⟨f⃗(r⃗).v⃗(r⃗ + l⃗) + v⃗(r⃗).f⃗(r⃗ + l⃗)⟩

=
1

2
⟨f⃗(r⃗ − l⃗).v⃗(r⃗) + v⃗(r⃗).f⃗(r⃗ + l⃗)⟩

= ⟨v⃗(r⃗).
( f⃗(r⃗ − l⃗) + f⃗(r⃗ + l⃗)

2

)
⟩

Where use of homogeneity has been made in the derivation.
The viscous terms can also get simplified using homogeneity. If we change the

independent variables from (r⃗, l⃗) to (r⃗, r⃗′ = r⃗+ l⃗) then the viscous contribution
becomes

+
1

2
ν(∂j∂j + ∂′

j∂
′
j)⟨viv′i⟩

Back to variables(r⃗, l⃗) the partial derivatives will take the form

∂i → ∂i − ∂l
i , ∂′

i → ∂l
i

and the contribution becomes
ν∇2

l ⟨viv′i⟩

Next, we observe that

⟨|δv|2δv⃗⟩ = −⟨v′
2

v⃗⟩+ ⟨v2v⃗′⟩ − 2⟨v⃗.v⃗′δv⃗⟩
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(All the additional terms cancel by isotropy) Taking divergence in the l⃗ space
of the last quantity we get

−1

4
∇l.⟨|δv|2δv⃗⟩ = −1

2
∂t⟨v⃗(r⃗).v⃗(r⃗+l⃗)⟩+ν∇2

l ⟨v⃗(r⃗).v⃗(r⃗+l⃗)⟩+⟨v⃗(r⃗). f⃗(r⃗ − l⃗) + f⃗(r⃗ + l⃗)

2
⟩

(11)
Which is the desired Karman-Howarth-Monin relation. The quantity in eq.

(12) will be called the physical space energy flux, since it is equal to

ε(⃗l) = −1

2
∂t⟨v⃗(r⃗).v⃗(r⃗ + l⃗)⟩

∣∣∣
{N.L.}

(12)

Or the nonlinear contribution to the time derivative.
Note that for very small increments l⃗ the divergence term vanishes (assuming

differentiability of the velocity field) and we get

∂t
1

2
⟨v2⟩ = ⟨f⃗ .v⃗⟩+ ν⟨v⃗.∇2v⃗⟩

which is essentially the same as eq. (1). It is also worth mentioning that all
time derivatives will vanish in the case of a stationary turbulence.

6.2 An expression for energy flux

Back in section 2 we defined the quantity ΠK to be minus the nonlinear energy
flux in wave numbers less than K. Hence ΠK can be written in terms of energy
flux we just derived to be

ΠK =
1

(2π)3

∫
|⃗k|<K

d3k⃗

∫
d3 l⃗ e−ik⃗.⃗lε(⃗l)

Evaluating the integral over k⃗

ΠK =
1

2π2

∫
d3 l⃗ ε(⃗l)

sin(Kl)−Kl cos(Kl)

l3

Or equivalently (using integration by parts)

ΠK =
1

2π2

∫
d3 l⃗

sin(Kl)

Kl
∇l.

(
ε(⃗l)

l⃗

l2

)
substituting ε (eq. (13)) we get

ΠK = − 1

8π2

∫
d3 l⃗

sin(Kl)

Kl
∇l.

[ l⃗

l2
∇l.⟨δv2δv⃗⟩

]
(13)

Now to simplify more the relation for ΠK using isotropy statements, we begin
by two tensor definitions

bijm := ⟨vivjv′m⟩
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Bijm := ⟨(v′i − vi)(v
′
j − vj)(v

′
m − vm)⟩

Both tensors should be expressible in term of isotropic tensors (Kronecker’s

delta, Levi-Civita epsilon) and tensors made of the unit vector l̂ := l⃗
l . It should

also be symmetrical in the first two indices. The most general form is then

bijm = C(l)δij l̂m +D(l)(δim l̂j + δjm l̂i) + F (l)l̂i l̂j l̂m

incompressibility ∂mbijm = 0, using the identities ∂i l̂j =
δij−l̂i l̂j

l and ∂il = l̂i
reads

δij

(2(C +D)

l
+ C ′

)
+ l̂i l̂j

(
2D′ − 2D

l
+ F ′ +

2F

l

)
= 0

or
2(C +D)

l
+ C ′ = 0

2D′ − 2D

l
+ F ′ +

2F

l
= 0

The second equation can be simplified using the first as follows

0 = F ′ + 2D′ +
2F

l
+

4D

l
− 6D

l

= F ′ + 2D′ +
2F

l
+

4D

l
+

6

l

( l

2
C ′ + C

)
=

(
F + 2D + 3C

)′
+

2

l

(
F + 2D + 3C

)
which results in

F + 2D + 3C = 0

for bounded solutions. Re-expressing D and F in terms of C, b becomes

bijm = Cδij l̂m − (C + lC ′/2)(δim l̂j + δjm l̂i) + (lC ′ − C)l̂i l̂j l̂m (14)

And by using isotropy conditions B can also get simplified

Bijm = −2(lC ′ + C)(δij l̂m + δiml̂j + δjm l̂i) + 6(lC ′ − C)l̂i l̂j l̂m (15)

Having established these preliminary results, we now observe that

S(3)(l) = ⟨δv3||⟩ = Bijm l̂i l̂j l̂m = −12C (16)

We also expect from isotropy that the quantity ⟨δv2δv⃗⟩ is parallel to l⃗ and are

hence interested only in l̂ component

l̂.⟨δv2δv⃗⟩ = Biim l̂m = −4lC ′ − 16C (17)

substituting back to eq. (14) reads

ΠK = − 1

6π

∫ ∞

0

dl
sin(Kl)

l
(1 + l

d

dl
)(3 + l

d

dl
)(5 + l

d

dl
)
S(3)(l)

l
(18)
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6.3 The four fifths law

Now to derive the desired four fifths law we need to add a final assumption to
the previous list.

The driving force f⃗(t, r⃗) acts only at large scales compared to the coherency
length, ℓ0 ∼ K−1

c in other words

f⃗<
K(t, r⃗) ≈ f⃗(t, r⃗), for K > Kc

After the stationary state is reached, the time derivatives vanish. Energy con-
servation reads

⟨f⃗ .v⃗⟩ = −ν⟨v⃗.∇2v⃗⟩ = ε

The energy in wavenumbers less than K is also conserved.(Cf. eq. (4))

ΠK = WK +DK

The first assumption, reads in this context

WK>Kc ≈ W∞ = ⟨f⃗ .v⃗⟩ = ε

In the limit ν → 0 the quantity DK goes to zero for any fixed K since the
Reynolds number goes to zero for finite wave numbers and the finite non-zero
energy dissipation will be transported to higher wavenumbers (where Reynolds
number is significant).

lim
ν→0

DK = 0

hence
ΠK = WK = ε (19)

Eq. (18) now reads

ε = − lim
l→0

J(l)

∫ ∞

0

dx
sin(x)

x

= −π

2
lim
l→0

J(l)

in which

J(l) := (1 + l
d

dl
)(3 + l

d

dl
)(5 + l

d

dl
)
S(3)(l)

6πl

Assuming S(3)(l) ∝ lβ , we get

S(3)(l) =
−12εlβ

β(2 + β)(4 + β)

If we wish to get a finite limit for J in the small scale limit (this sets ε to
stay finite according to the third assumption), we must have

β = 1
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Which leads to

S(3)(l) = −4

5
εl (20)

This completes the derivation of the four fifths law.
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