
Lamb Shift
A semiclassical survey
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1 The Phenomenon

According to a first order perturbation theoretical view in fine structure con-
stant, α, energy levels of a hydrogen atom with hamiltonian
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and hence depend only on the principal quantum number n and total angular

momentum j. This result (consistent also with Dirac’s relativistic theory) hence
predicts no energy difference between levels 2S1/2 and 2P1/2 (They both have
n = 2, j = 1/2).

Lamb and Rutherford however discovered a shift (known as Lamb shift)
between the two levels corresponding to a wavelength of about 30 cm.

To describe this, a first step in the right track was taken by H. A. Bethe
using the classical quantum theory attached with vacuum fluctuations of elec-
tromagnetic fields in the same year (1947) with a reasonably good prediction of
frequency. In what follows we pretty much follow Bethe’s theory and give an
example which this semiclassical theory can not describe properly.

2 A Theory

The classical quantum theory is unable to describe phenomena such as spon-
taneous radiation and Lamb shift unless electromagnetic fields are also treated
quantum mechanically. An important resullt of quantising fields is that ”vac-
uum ground state has non-zero energy and hence fluctuating EM fields!” Any
alternative for the standard theory (known as QED) should hence include this
fact.

Closest possible alternative to old quantum theory is therefore {QM+”vacuum
fluctuates!”}. In other words matter will be treated quantum mechanically;
electromagnetic fields however will obey Maxwell’s equations2 superposed with
God-given stochastic fields due to vacuum ground state.

Stochastic properties of this zero-field are
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The constants are adjusted such that the ground state energy of a single
mode with frequency ω will be ω/2.

1In our units 4πε0 = µ0
4π

= h̄ = G = kB = 1
2Sources will be given by density operators in a trivial fashion. This is not of interest in

our discussion though.
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Now consider a particle with mass m and charge e subject to a potential
V (x) and EM potentials (ϕ,A). The hamiltonian becomes

H = φ(x) +
1

2m
(∇2 + 2ieA′.∇+ e2A′2)

With A′ = A+A0 representing the superposition of original and fluctuating
field. Perturbative Hamiltonian is

δH =
e2

m
A0.A− e

m
A0.p+

e2

2m
A2

0

This is in effect equivalent3 to exerting a periodic force (due to fluctuating
electric field) and making the electron oscillate. As a result, the electron feels
an average potential

Veff (x) = ⟨V (x+ xosc.)⟩osc.
For small oscillations

Veff (x) = ⟨V (x) + xosc.
i ∂iV (x) +

1

2
xosc.
i xosc.

j ∂i∂jV (x) + · · · ⟩osc.

The linear terms disappear (symmetry) and the first non-vanishing term will
be

1

3
(∇2V )⟨x2osc.⟩osc.

To estimate the oscillation amplitudes we use a free electron model.

ma = F0e
iωt ⇒ x =

F0

mω2
ei(π+ωt)

r.m.s amplitudes for different frequencies add up to yield
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)
In very low frequencies, comparable to hydrogen frequency, our electron is

no longer free. This means we need write for lower limit

ωmin = me4

In very high frequencies (comparable to m), our electron is no longer single.
This means

3A perhaps neater way would be to avoid using the concept of force and treat a stochastic
perturbative Hamiltonian quantum mechanically. The interpretation of stochastic here needs
to be adjusted in a way to obtain the same results.
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ωmax = m

and
ωmax

ωmin
= e−4 = α−2

The perturbation becomes

δH =
e2

3πm2
log

(ωmax

ωmin

)
∇2V

In the case of hydrogen, V = −e2/x and

δH =
−4e4

3m2
log

(
e4
)
δ3(x)

Now this term makes for energy difference between 22S1/2 and 22P1/2. The

difference being (using ψ100(0) = 1/
√
16πa3)

∆ELamb = E(22S1/2)− E(22P1/2) = −m

6π
α5 log(α)

with α ≡ e2 being the famous fine structure constant. This predicts the
frequency to be about 670MHz which is far from being exact but is of the same
order and serves reasonably well as a first estimation. Note that the observed
frequency is 1057 MHz.

3 Flaws (Qubeats!)

How far can this mixed theory take us? Is there any phenomenon which this
theory can not describe? The answer is affirmative indeed; the example is called
”Quantum beat phenomenon” and is observed in laboratories confirming QED
predictions.

Consider a three level system prepared in the state

|ψ⟩ = cae
−iωat |a⟩+ cbe

−iωbt |b⟩+ cce
−iωct |c⟩

Ea ≫ Ec > Eb = 0. Further assume that the dipole operator P is such that
transitions from |a⟩ to both |b⟩ and |c⟩ are allowed. Our semiclassical theory
predicts

p(t) = Pacc
∗
acce

iωact + Pabc
∗
acbe

iωabt + c.c

The oscillating field generated will exhibit a beats phenomenon due to close
frequencies of the two possible transitions.

QED however says

|ψ(t)⟩ = cae
−iωat |a, 0⟩+cbe−iωbt |b, 0⟩+cce−iωct |c, 0⟩+Tab(t) |b, 1ωab

⟩+Tac(t) |c, 1ωac
⟩
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In which the second state, represents EM field and T ’s are transition proba-
bility amplitudes as functions of time. The electric field is the creation operator

Eω(t) ∝ aω

And the interfering term becomes

⟨Eωac
Eωab

⟩ ∝ ⟨c|b⟩ = 0

And no interference (beats) is predicted. This is in accordance with experi-
mental observations ofcourse.
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