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Abstract

Starting from the classical mechanics, the rigid motion is generalized to relativistic mechanics.
The popular notion of Born rigidity is disputed as a physically consistent candidate. Alternative
approaches from fluid mechanics and elastic theory of solids are introduced; however, non of them
may be regarded as the final answer to the question of what, in relativstic physics, is a rigid body.
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1 Introduction

The classical rigid body motion contradicts the relativistic theory in two ways. First, for sufficiently
large rotating rigid objects, the particular velocity of particles exceeds the speed of light which is
strictly forbidden in the relativistic theory; we shall refer to such problems as kinematic problems.
Another well known example of a kinematic problem is the one known by Ehrenfest’s paradox. Con-
sider a rotating gramophone disk. To the owner of the device, at each moment in time, the disk
appears as a flat circular disk of radius R and, not surprisingly, of circumference 2πR. However, to
an ant sitting on the very edge of the disk the situation looks different. It will observe its distance
to the center of rotation to be R again since there are no transverse Lorentz contractions. However,
the circumference now seems larger in its rest frame. Therefore the ant measures the circumference to
diameter ratio for the circular disk to be 2γπ. This apparent paradox is alleviated when one notices
that the geometry on a rotating disk is not necessarily Euclidean. [1]

There is also a second way in which the rigidity notion contradicts relativity. A long, rigid rod
may be used to transmit superluminal signals since moving one end would instantaneously cause a
corresponding move in the other end. We will be calling this, the causality problem.

To describe the motion of an extended body, a convenient way is to determine a velocity vector
field at all relevant times and spatial points. The motion of the constituent particles of the extended
body are then assumed to follow the integral curves of the given vector field. The body is then called
rigid if the velocity field satisfies certain rigidity conditions. This will be our point of view in most of
what followswith the exception of the last section where a different way of describing the motion will
be more convenient.

2 Rigidity in Newtonian Mechanics

A classical rigid body satisfies the global constraint that the distance between any two particles does
not change during the motion. Mathematically, this is equivalent to the following constraint on the
velocity field v(r, t) [

v(r, t)− v(r′, t)
]
.(r− r′) = 0 ∀r, r′

For r′ = r + δr and up to first order in δr this implies

∂ivj + ∂jvi = 0 (1)

Using the symmetry of the second partial derivatives we may write

∂i∂jvk = −∂i∂kvj = −∂k∂ivj = ∂k∂jvi = ∂j∂kvi = −∂j∂ivk = −∂i∂jvk

which in turn implies
∂i∂jvk = 0

The solution to this equation is
v(r, t) = v0(t) + Ω(t)r

for some antisymmetric tensor Ω(t). Such a field also satisfies the global constraint and therefore we
find that local rigidity implies global rigidity in classical mechanics. In other words, a rigid body (eg.
your pen) is rigid only because its small elements are tightly held to their adjacent elements. No action
at distance is needed to guarantee that the ends are kept at a fixed distance from each other. This
understanding will be our guide when trying to extend the rigidty concept to the relativity theory
where global constraints cease to be physical.
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2.1 Free Rigid Body Motion

In this short subsection, we will find a geometric representation for the free motion of a classical rigid
body. To do so, let us use the CM frame where v0 = 0 and the motion is purely rotational. The
Lagrangian is1

L = T =
1

2

∫
drρ(r, t)ΩniΩnjrirj

If R(t) solves dR
dt = ΩR with the initial condition R(0) = 1, then the density is given by

ρ(r, t) = ρ0
(
RT (t)r

)
Here ρ0 is the mass density corresponding to the initial orientation of the body. Then, the Lagrangian
becomes

L =
1

2
MΩniΩnjRii′Rjj′J 0

i′j′

Here

M ≡
∫
ρ0(r)dr; J 0

ij ≡
1

M

∫
drρ0(r)rirj

Using a parametrization (coordinate system), θµ, on SO(d) we may re-write the Lagrangian as

L =
1

2
MJ 0

ij

∂Rni
∂θα

∂Rnj
∂θβ

dθα

dt

dθβ

dt

This motivates a metric

gαβ ≡ J 0
ij

∂Rni
∂θα

∂Rnj
∂θβ

that further simplifies the Lagrangian into

L =
1

2
Mgµν

dθµ

dt

dθν

dt

It is well-known that this Lagrangian induces geodesic paths. In fact, the Euler equation for rigid
body dynamics is the same as the geodesic equation on SO(d) with the special metric that we just
introduced. We won’t be discussing the details any further here.

3 Born Rigidity

Our first guess for generalising (1) to relativistic physics would be

∇{αVβ} = 0

but this implies

V α∇αVβ = −V α∇βVα = −1

2
∇βV αVα = 0

in other words, all particles move along geodesics. This is not what we wanted. In a rigid body, certain
tensions may exist and the particles do not necessarily follow geodesics. To soften this strict condition,

1Here we may neglect the interaction potentials that give rise to the rigid constraint. You can say that the atoms are
tied together with springs with inifinitely large k values. The potential will go

V ∼
F 2

k

for F being the typical forces and tensions present in the body. This is clearly vanishing for infinite k.
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we only insist that for simultaneous adjacent space-time points, xµ and xµ+δxµ, the relative velocity
vector be orthogonal to the distance vector.

δxµVµ = 0⇒ δxµδxν∇νVµ = 0

this means that for some anti symmetric tensro Ωαβ

∇αVβ = Ωαβ +AαVβ

this time, the normalization condition (V µVµ = −1) gives the following formula for A

Aµ = ΩµνV
ν

therefore
∇αVβ = Ωαµ(δµβ + V µVβ)

while the projector on the right may suggest that it is impossible to reverse the equation and find Ω
in terms of velocity derivatives, the anti symmetry assumption makes this task doable.

Ωαβ = ∇αVβ − VβV µ∇µVα (2)

This is what Born suggested in 1909 as the equation that governs rigid body motion in relativistic
physics.[2]

Let us see where this leads us in the simplest case i.e. the 1+1 dimensional Minkowski space-time.
Here, the velocity at each point is described by a single real number α(x, t).

V µ = (coshα, sinhα)

the Born rigidity is equivalent to
∂xα+ tanh(α)∂tα = 0

Now consider a finite rigid train sitting on a rail track. For times t < 0, the whole train is sitting still.

α(x, t) = 0; ∀t ≤ 0

at t = 0, x = 0 the driver decides to move the train forwards say by exerting a constant force to it.
Before proceeding, let us foliate the space-time with timelike curves

t(τ) = sinh τ ; x(τ) = ξ + 1− cosh τ

−
1

−
1

−1

0

0

0

1

1

1

x

t

1+1 Minkowski Space-Time
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In the cooridnate system (τ, ξ), the Born rigidity (2) is written as

∂α

∂ξ

(
1 + tanhα tanh τ

)
+

tanhα

cosh τ

∂α

∂τ
= 0

Now note that the curve corresponding to ξ = −1, is causally disconnected from the driver’s decision.
Therefore, we may write

α(τ,−1) = 0; ∀τ

But, this quickly implies
α(τ, ξ) = 0; ∀τ, ξ

In other words, the existence of a non trivial (i.e. not in uniform motion) Born rigid body contradicts
the causality principles. In fact, our initial assumption that led to the equations of motion, was not
causal to begin with. Even for small distances, the assumption that the velocities are adjusted mo-
mentarily will lead to super-luminal signals.

The Born rigidity notion has appeared in many disguises throughout the years. (For example Cf.
[3]) and is considered as the most prominent rigidity notion to work with. However, it suffers from
causality problems as mentioned above and therefore may not be counted as the answer to the ques-
tion of what a relativistic rigid object is. In fact, according to [2], it appears that at the time, people
were more concerned about the kinematic problems and not the causality problems regarding the rigid
motion. Therefore stationary solutions of (2) were used to describe stationary rigid motions and their
corresponding geometries.

As an example of such stationary solutions, let us consider the stationary, Born rigid rotation of a
disk in 2 + 1 dimensions. The line element is

ds2 = −dt2 + dr2 + r2dφ2

with non-zero symbols

Γφrφ = Γφφr =
1

r
; Γrφφ = −r

We are looking for a velocity field

V µ =
(

coshα, 0,
1

r
sinhα

)
Vµ =

(
− coshα, 0, r sinhα

)
with α = α(r). Born rigidity is then equivalent to

dα

dr
=

sinh 2α

2r

integrating the first order equation, we get

tanhα = ω0r

note that this velocity field may be written as

~V =
~∂t + ω0

~∂φ√
1− ω2

0r
2

which is proportional to a Killing vector field. Below, we will discuss this relationship in more detail
below.
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3.1 Relationship to Killing Fields and the Herglotz-Noether Theorem

A Killing vector field, ξµ is one that satisfies the Killing equation

∇{µξν} = 0

For a timelike2 Killing field, define

λ ≡ −1

2
log
(
− ξµξµ

)
note that ξα∇αλ = 0 is implied by the Killing equation. Now consider the properly normalized velocity
field

V µ ≡ eλξµ

a simple calculation shows that the following tensor is anti-symetric

Ωαβ = ∇αVβ − VβV µ∇µVα

in other words

Converse Herglotz-Noether Th’m: Any motion tangent to a (timelike) Killing field is Born rigid.

To see if the converse also holds, let us seek a λ that guarantees that

ξµ ≡ e−λV µ

is a Killing field. Writing down the Killing equation we find the equivalent condition

∇{αVβ} = V{α∇β}λ

If we project this on V β , use (2), and assume V β∇βλ = 0 (speculated based on our previous results)
we get

∂αλ = V µ∇µVα
which proves the followin lemma.

Lemma: A Born rigid motion is tangent to some timelike Killing field iff

∇βV µ∇µVα = ∇αV µ∇µVβ

In 1910, Herglotz [5] and Noether3 [6] independently proved that in the 3+1 Minkowski space-time
the above condition holds for any Born flow.

Herglotz-Noether Th’m: In the 3+1 Minkowski space-time, every Born rigid motion is tangent to
a timelike Killing field.

Later, in 1967, Wahlquist and Estabrook generalised this result to conformally flat space-times.[7]
However, a full generalization of the theorem is impossible as [8] provides a counter example in Bianchi
space-time. Nevertheless, the Herglotz-Noether theorem hints that Born rigidity not only violates the
causality principles, but also that it is too restrictive to be considered the final solution.

2Later, we will be asking particles to move tangent to this field. This is the only reason we want the Killing field to
be timelike.

3This is Fritz Noether, Emmy’s brother.
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There is a puzzling problem here and before solving it, this project may not be considered com-
plete. The Born equation in 1+1 Minkowski space-time

(
α,x + tanh(α)α,t = 0

)
is a well behaved

first order partial equation for α(x, t) and must have a unique solution corresponding to any sufficient
initial condition. Let xµ(τ) be any timelike worldline, then there must exist a Born flow that has to
V µ = dxµ/dτ on the worldline. However, such a flow could be considered as a counter example for the
Herglotz-Noether theorem!

4 Rigid Fluids

Another approach is to achieve rigidity via considering a very viscous and non-compressible fluid. For
a viscid fluid we have

Tµν = pgµν + (p+ ρ)V µV ν + η∇{µV ν} + λ(∇αV α)gµν

this implies the equation of motion

∇νp+V µVν∇µ(p+ρ) + (p+ρ)V µ∇µVν + (p+ρ)Vν∇µV µ+ η
(
∇µ∇µVν +∇µ∇νV µ

)
+λ∇ν∇µV µ = 0

η and λ are called shear and bulk viscosities respectively; the larger they are, the more resistant
the fluid will be to shear and bulk deformations. Being interested in rigidity, we consider the limit
η, λ→∞. In this limit, the equations of motion become

�V µ +RµνV ν + (1 +
λ

η
)∇µ∇αV α = 0

Now we speculate that for a rigid fluid, the flow is incompressible and therefore ∇αV α = 0. This gives

�V µ +RµνV ν = 0 (3)

This does not suffer from the causality problem since it looks exactly the same as the equation
for the electromagnetic four potential in vacuum. However, the solutions do not necessarily satisfy
∇αV α = 0 which we used as a premise to derive this equation of motion. Even worse, being of second
order, this does not guarantee that the normalization condition continues to hold.

One way to overcome this, as suggested by [4] is to use a perfect fluid with maximum physical
speed of sound.

Tµν = ρ
(
gµν + 2V µV ν

)
This leads to

V α∇αVµ − Vµ∇αV α +
1

2
∇µ log ρ = 0

While this may be useful in 1+1 dimensions, in higher dimensions the equation is not restrictive enough
and does not produce any resistance against shear deformations. With this remark we conclude our
search for a rigid fluid and try out another idea.

5 Rigid Solids

In this last section, we will be following [9] in developing a relativstic theory of elastic solids in order
to find the physical criteria for a rigid motion. However, our choice for the right set of parameters
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that represent a rigid solid will be different.

Let us begin with labelling the particles in a solid with coordinates ya with a = 1, 2, · · · , n. Then,
the motion is fully described by determining the scalar fields ya(xµ). For what we will be doing shortly,
this will be more convenient than dealing with the velocity field. This viewpoint already suggests a
field theoretic approach and therefore we will be seeking a Lagrangian model to describe the motion.

L = L(ya, ∂µy
a)

higher order derivatives are suppressed since we are looking for a second order equation of motion (for
ya) similar to classical elastic models. Also, we assume homogeneity to drop any explicit dependence
of L on ya.

At any point in the space-time, the four velocity is found by solving

V µ∂µy
a = 0; ∀a

this allows us to locally write the line element as

ds2 = −dτ2 + habdy
adyb

with the understanding that V = ∂
∂τ . The spatial metric is given by

hab = gµν
∂xµ

∂ya
∂xν

∂yb
; hab = gµν

∂ya

∂xµ
∂yb

∂xν

We assume that in the absence of any tension, the distances between particles are given by a metric k

ds2 = kabdy
adyb

Then a solid is called elastic if the Lagrangian depends only on the relative metric h/k =
√
k−1h

√
k−1.

For simplicity, we assume that the original metric k is Euclidean around the special ya that we are
considering, i.e.

kab = δab

This assumption costs no generality but allows us to write L = L(h). The energy momentum tensor is

Tµν = Lgµν − 2
∂L
∂gµν

= Lgµν − 2
∂L
∂hab

∂ya

∂xµ
∂yb

∂xν

in the local comoving coordinates introduced above, this has ρ = Tττ = −L. In other words the
Lagrangian is given by the density in terms of hab. If we further assume isotropy, then the density
would only depend on the metric eigenvalues.

ds2 = −dτ2 +
∑
a

(
s(a)dy

a
)2

; ρ = ρ(sa)

For example, let us consider the special case that ρ depends only on the determinant of h.

Tµν = −ρgµν + 2
dρ

ddet[h..]
det[h..]hab

∂ya

∂xµ
∂yb

∂xν

= −ρgµν + 2
dρ

ddet[h..]
det[h..]

(
gµν + VµVν

)
= pgµν + (p+ ρ)VµVν
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with

p ≡ −ρ+ 2
dρ

ddet[h..]
det[h..]

which clearly describes a perfect fluid model.

To define the rigid solid, we consider a Hookean model where the density is given by a quadratic
formula in terms of small deformation vectors. For small displacements, ya → ya + ξa, the eigenvalues
become sa = 1 + σa with σ = O(ξ). Therefore a second order (Hookean) model may be written in the
form

ρ(σa) = ρ0 +
∑
a

Aaσa +
∑
ab

Babσaσb

permutation symmetry then implies

ρ(σa) = ρ0 +A1

∑
a

σa +A2

∑
a

σ2
a +A3

(∑
a

σa

)2
Dropping the constant term, we may write the Lagrangian as

L = A1

∑
a

σa +A2

∑
a

σ2
a +A3

(∑
a

σa

)2

It remains to choose the right set of parameters that give rise to a rigid solid. In order to do that,
let us put start with our solid at rest in a flat space-time and see how small perturbations evolve over
time. The mathematical set up is

ya = xa + ξa(x)

with small ξ. We will need to carry out the calculations up to O(ξ2).

5.1 The Spatial Metric

Let us begin with the velocity field given by

V µ =
(

1 +
1

2

∑
a

(∂tξ
a)2,−∂tξa +

∑
b

(∂tξ
b)(∂bξ

a)
)

Next we have to do the spatial metric; that is ds2 = ηµνdx
µdxν for

dxµVµ = 0; dxµ∂µy
a = dya

A careful calculation then gives

dx0 =
∑
a

dya
{
− ∂tξa +

∑
b

(∂tξ
b)
(
∂aξ

b + ∂bξ
a
)}

dxa =
∑
b

dyb
{
δab + ∂bξ

a + (∂tξ
b)(∂tξ

a) +
∑
c

(∂bξ
c)(∂cξ

a)
}

this leads to a spatial metric

hab = δab − ∂bξa − ∂aξb + (∂tξ
a)(∂tξ

b) +
∑
c

[
(∂aξ

c)(∂cξ
b) + (∂bξ

c)(∂cξ
a) + (∂aξ

c)(∂bξ
c)
]

(4)
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5.2 Longitudinal Waves

The longitudinal waves are best discussed in 1+1 dimensional Minkowski space-time. Let

y = x+ ξ(t, x)

then the longitudinal speed of sound in this material will be

c2L = −3A1 + 4(A2 +A3)

A1
(5)

5.3 Transverse Waves

This time, we work in the 2 + 1 dimensional Minkowski space-time. Let

y1 = x1; y2 = x2 + ξ(t, x1)

this yields a transverse speed of sound

c2T = −A1 + 2A2

A1
(6)

5.4 The Sigma Model Solid

The so called (by [9]) sigma model solid is achieved by maximizing the longitudinal and transverse
propagation speeds. According to (5) and (6) this means

A2 = −A1; A3 = 0

For this choice of parameters, the Lagrangian is equivalent to that of a linear sigma model

L =
∑
a

(∂µξ
a)(∂µξa) (7)

However, this equivalence is only valid for small oscillations and should not be over emphasized.

Although the sigma model solid suffers from no causal or kinematic problems, [9] points out that
this model leads to negative bulk modulus and therefore puts it aside as an inconsistent model. A
more serious problem with the elastic solid models is that in general, the lagrangian will not be of
second order in displacement vector ξa. This means that the propagation speed for both transverse
and longitudinal waves may be different in the nonlinear regime.

6 Conclusion

In this paper we have reviewed several candidates for a relativistic rigid body and concluded that none
of them deserves to be regarded as the final answer since they all suffer from physical inconsistencies.
The diversity of the proposals however, suggests that it may be possible to find a consistent model
with maximal wave propagation speed.

Also, a geometric interpretation for the free rotation of a classical rigid body is provided in section
2. This may be used to analyse the dynamical features of the free precession such as stability or
ergodicity.
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