
The Rigid Sphere and The Ant
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If c(t) denotes the location of the center of the sphere and x(t) does so for the location of the ant, then

x(t) = c(t) +R(t)n
(
θ(t), φ(t)

)
where n is the normal vector in the (θ, φ) direction. The following vector is conserved

c+ α
[
c+Rn

]
and therefore

c =
α

1 + α

(
n0 −Rn

)
this yields the ant’s position as

x =
αn0 +Rn

1 + α

Then, we can write the angular momentum as

L = LSphere + LAnt = βω + c× ċ+ αx× ẋ

= βω +
α

1 + α

[
ω +R(n× ṅ)− (ω.Rn)Rn

]
= βẑ+

α

1 + α

[
ẑ− n0 cos θ0

]
where in the last line, I have used the initial conditions to evaluate the angular momentum. This is a linear system
of equations to determine ω. Then, the evolution for R is found as

dR

dt
= ΩR =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

R
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It is best to use the Lagrangian method. Using

|ω|2 =
1

2
Tr

(
ΩTΩ

)
=

1

2
Tr

(
ṘT Ṙ

)
the Lagrangian is

L =
1

2

[β
2
Tr

(
ṘT Ṙ

)
+

α

1 + α
|ΩRn+Rṅ|2

]
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The zeroth order solution is

ω0(t) = ẑ ; Ω0(t) =

 −1
+1


R0(t) =

 cos t − sin t 0
+ sin t cos t 0

0 0 1


therefore the first order solution will look as below

ω(t) = ẑ+ αω1

R(t) ≈ (1 + αΛ)R0(t)

where

Λ =

 0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0


In fact the vector λ describes the small extra rotation on the sphere due to the presence of the ant. The evolution
of the rotation matrix Ṙ = ΩR yields

Λ̇ = [Ω0,Λ] + Ω1

or in vector notation
λ̇ = ẑ× λ+ ω1

which is solved as

λ(t) =

∫ t

0

ds R0(t− s)ω1(s)

Finally, the conservation of angular momentum leads to

ω1 = β−1
[
cos θ R0n− n0 cos θ0 −R0(n× ṅ)

]
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To find the net effect of all moving vehicles, let us first find the net correction to the angular velocity vector

ω1 = β−1
[
R0

∑
i

cos θini −
∑
i

n0,i cos θ0,i −R0

∑
i

ni × ṅi

]
It is then natural to assume that the average vector∑

i

cos θini = Nµ

is time invariant. Here N is the number of all vehicles on the road. The z component of this vector is irrelevant
and gets cancelled between the first two terms. The x and y components can in principle contribute to a precession
motion of the earth; we neglect that since it is balanced out by other constant material like mountains. This means
we are left with the final term. Regrading this, I assume a stationary motion on the roads and replace the integral
in λ with a t. Finally, the net rotation is

ψ(t) =
−t

β
R0(t)

∑
i

αini × ṅi
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For each car moving up a road, let’s say there is an adjacent car that moves down the road with the same speed.
If the width of the road is w, (count negative when cars drive left like in the GB!) then

ψ(t) = −Nt

2β
R0(t)

〈
wvαn

〉

The z-component leads to a change in the daytime

δD =
ND2

4πβMa2

〈
wvm cos θ

〉
where D is the day time. To get some numbers, I assume

⟨wmv cos θ⟩ = 2⟨w⟩⟨m⟩⟨v⟩⟨cos θ⟩

⟨w⟩ ≈ 10m ; ⟨m⟩ ≈ 1500 kg ; ⟨v⟩ ≈ 15m/s ; ⟨cos θ⟩ ≈ 0.5 ; N ≈ 109 ; β ≈ 0.3

leading to

δD ≈ +2× 10−15 s

Assuming a rotation rate of smaller size in the x-y directions, (due to imbalances from the distribution of roads
and their regulations) it turns out that it will take about 1019 days before the earth has rotated a hundredth of a
radian in a direction other than its axis. Moral of the story: You are safe to ignore the effects of left/right driving
conventions on the earth’s motion!
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