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Chapter 2: Quantum Field Theory

Exercise 2.1

Since the operator D can involve higher order derivatives, the eigenfuncions usually need degeneracy indices as well.∫
dxu∗n,sum,r = δmnδrs

First define

φ̃n,s ≡
∫
dxu∗n,s(x)φ(x)

π̃n,s ≡
∫
dxu∗n,s(x)π(x)

These operators are such that φ̃n,s and π̃†n,s are conjugate. Furthermore the Hamiltonian becomes

H =
1

2

∫
dx
(
π2 − φDφ

)
=

1

2

∑
n,s

(
π̃†n,sπ̃n,s + ω2

nφ̃
†
n,sφ̃n,s).

Finally define

an,s ≡
ωnφ̃n,s + iπ̃n,s√

2ωn

these operators satisfy

[an,s, a
†
m,r] = δmnδrs

Also, note that if un,s form a complete basis, then so do u∗n,s; this implies

φ(x) =
∑
n,s

1√
2ωn

(
un,s(x)an,s + u∗n,s(x)a†n,s

)

1



finally, we write

ωna
†
n,san,s = Hn,s −

i

2
ωn
(
π̃†n,sφ̃n,s − φ̃†n,sπ̃n,s

)
= Hn,s −

1

2
ωn

therefore H =
∑
n,sHn,s becomes

H =
∑
n,s

ωn
(
a†n,san,s +

1

2

)

Exercise 2.2

Under a change of variables φ(x)→ φ′(x) = φ(x) + εδφ(x), the value of an integral remains unchanged

〈X〉 =
1

Z

∫
[dφ]XeiS[φ] =

1

Z

∫
[dφ′]X ′eiS

′[φ′]

=
1

Z

∫
[dφ]

∣∣∣ ∂φ
∂φ′

∣∣∣(X + δX)eiS+iδS

Whenever δφ(x) does not depend on the filed φ(x), the Jacobian becomes unity and, up to the first order (in ε),
we get

〈δX〉+ i〈XδS〉 = 0

For X = φ(y), and δφ(x) = δ(x− z), we have δX = εδ(y − z) and

δS = −
∫
dx
(
m2φ(x)δ(x− z) + φ,µ(x)∂µδ(x− z)

)
= (�−m2)φ(z)

which yields1

(�z −m2)〈φ(y)φ(z)〉 = iδ(y − z)

Exercise 2.3

REMARK: This is only valid for even potentials.

Essentially, we need to show

{ψi, ψj}
∂V

∂ψj

!
= [ψi, V (ψ)]

For the trivial even term, i.e. a constant potential, this obviously holds. For a generic even term and using the fact
that the anti-commutator is a c-number, we may write

{ψi, ψj}∂jψk1ψl1 · · ·ψknψln

=

n∑
r=1

δjkrψk1ψl1 · · ·ψkr−1
ψlr−1

{ψi, ψj}ψlrψkr+1
ψlr+1

· · ·ψknψln

−
n∑
r=1

δjlrψk1ψl1 · · ·ψkr−1
ψlr−1

ψkr{ψi, ψj}ψkr+1
ψlr+1

· · ·ψknψln

=

n∑
r=1

ψk1ψl1 · · ·ψkr−1ψlr−1

(
ψiψkrψlr + ψkrψiψlr − ψkrψiψlr − ψkrψlrψi

)
ψkr+1ψlr+1 · · ·ψknψln

= [ψi, ψk1ψl1 · · ·ψknψln ] �

1Note that I am using a −+++ signature.
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Exercise 2.4

To be added!

Exercise 2.5

The relevant term is

〈θi1θi2θi3θi4〉 =
1

8
A−1
j1j2

A−1
j3j4

∂i4∂i3∂i2∂i1bj1bj2bj3bj4

=
1

8
〈θj1θj2〉〈θj3θj4〉

∑
p∈S4

(−)σ(p)δj1ip(1)δj2ip(2)δj3ip(3)δj4ip(4)

where σ(p) is the number of adjacent permutations in the permutation p. Each Wick grouping gets repeated 8 times,
one factor of two for internal order of each grouping and an extra factor of two for the order of the pairs. Symmtery
of the ordinary multiplication and the antisymmetry of Grassmann multiplication along with antisymmetry of A−1

ij ,
makes all these terms have the same sign and therefore

〈θi1θi2θi3θi4〉 = ±〈θi1θi2〉〈θi3θi4〉 ± 〈θi1θi3〉〈θi2θi4〉 ± 〈θi1θi4〉〈θi2θi3〉

counting the adjacent permutations, the signs turn out to be

〈θi1θi2θi3θi4〉 = +〈θi1θi2〉〈θi3θi4〉 − 〈θi1θi3〉〈θi2θi4〉+ 〈θi1θi4〉〈θi2θi3〉

Exercise 2.6

Before starting to solve the problem, let us mention that the order of appearance of variables in dθ̄ is the opposite
of the order in dθ; so ∫

dθ̄dθ ≡ ∂

∂θ̄1
· · · ∂

∂θ̄n

∂

∂θn
· · · ∂

∂θ1
.

Now, back to the problem at hand, let us start by writing

e−Mij θ̄iθj =

∞∑
n=0

(−)n

n!

∑
i1···in
j1···jn

(
Mi1j1 θ̄i1θj1

)
· · ·
(
Minjn θ̄inθjn

)
One can permute the parantheses without changing the sign and this will cancel the n! in the denominator.

e−Mij θ̄iθj =

∞∑
n=0

(−)n
∑

〈(i1,j1),··· ,(in,jn)〉

(
Mi1j1 θ̄i1θj1

)
· · ·
(
Minjn θ̄inθjn

)
where the notation used in the second sum means that the sum is over unordered tuples of ordered pairs. Considering
that no second powers exist in the realm of Grassmann variables, this is clearly the same as

e−Mij θ̄iθj =
∏
(i,j)

(
1−Mij θ̄iθj

)
After taking the full integral (derivative) only the terms in which every variable is present exactly once, survives.
That is ∫

dθ̄dθ e−Mij θ̄iθj =
∑
p∈Sn

±Mp(1)1 · · ·Mp(n)n

To commpute the signs, first (freely) order each term by their non-barred index to get

(−)nMp(1)1 · · ·Mp(n)n

∫
dθ̄dθ θ̄p(1)θ1 · · · θ̄p(n)θn
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= (−)σ(p)M1p(1) · · ·Mnp(n)

Here is how the minus-sign-counting works: first, we have n minus signs from the product of all the
(
1−Mij θ̄iθj

)
terms; then we have 1 + 2 + · · ·+ n minus signs used to bring each θi to the far left before integration; and then at
last, there are σ(p) + 0 + 1 + · · ·+ (n− 1) minus signs to order the barred variables properly. Finally we recognize
this as

I2(M) = detM
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Chapter 3: Statistical Mechanics

Exercise 3.1

a)

〈NL〉 =
∑
n

N !

n!(N − n)!
2−N .n = 2−NN

∑
m:=n−1

(N − 1)!

m!(N − 1−m)!

= 2−NN.2N−1 = N/2

b)
〈N2

L〉 = 〈NL〉+ 〈NL(NL − 1)〉

=
N

2
+
∑
n

N !

n!(N − n)!
2−N .n(n− 1)

=
N

2
+ 2−NN(N − 1)

∑
m=n−2

(N − 2)!

m!(N − 2−m)!

=
N

2
+
N(N − 1)

4
=
N(N + 1)

4

therefore

∆NL =
√
〈N2

L〉 − 〈NL〉2 =

√
N

2

c) Defining

X ≡ NL −N/2√
N/2

and in the large N limit, we may write

fX(x)
2√
N
≈ P

[
NL = n(x)

]
where

n(x) ≡
⌊N + x

√
N

2

⌋
≈ N + x

√
N

2

Using the Stirling formula (note that limN→∞ n(x) =∞) we get

fX(x) =
1√

2πex2/2

Exercise 3.2

a)

Z =
∑
[σ]

exp
{N−1∑
n=0

[
− (H/2)(σn + σn+1) +Kσnσn+1

]}
=
∑
[σ]

Tσn,σn+1 = TrTN

with

Tσ,σ′ ≡ exp
{N−1∑
n=0

[
− (H/2)(σ + σ′) +Kσσ′

]}
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or, in matrix form

T ≡
(
eK−H e−K

e−K eK+H

)

b)

f ≡ lim
N→∞

− 1

N
log TrTN

= − log
[

lim
N→∞

(τN+ + τN− )1/N
]

= − log τ+

where
τ+ ≡ eK coshH +

√
e2K sinh2H + e−2K

therefore

f = − log
[
eK coshH +

√
e2K sinh2H + e−2K

]

c)

M ≡ ∂f

∂H
= −e

K sinhH + e2K sinh(2H)/2
√
e2K sinh2H + e−2K

eK coshH +
√
e2K sinh2H + e−2K

for H � 1

M ≈ He2K

and therefore the magnetic susceptibility diverges like e2K as temperature approaches zero. We also note that at
finite temperatures, the free energy (per spin site) is well behaved and therefore we observe no phase transitions.

d) Using the symmetries of the problem, it is easy to show that the two point correlation function

C` ≡ 〈σnσn+`〉 − 〈σ2〉

is, up to a constant function of `, the same as

2
[
P `++(H,K) + P `++(−H,K)

]
where P `++(H,K) is the probability that two spins, a distance ` apart, are both pointing up. This is written as

P `++(H,K) = lim
N→∞

〈+|T ` |+〉 〈+|TN |+〉
TrTN+`

=
∣∣ 〈τ+|+〉 〈+|τ−〉 ∣∣2(τ−

τ+

)`
+ cte.

I won’t substitute the complete formulae; only note that since the spectrum of T does not depend on the sign of
H, we know that the correlation function is always in the form

C` = C0

(1− χ
1 + χ

)`
where

χ ≡
√

tanh2H + e−4K
(
1− tanh2H

)
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Exercise 3.3

a) Similar to what we did in the previous problem, the transfer matrix is

Tij = e−βEij = eKδij + e0(1− δij)

T = (eK − 1)I + J

b) J has two different eigenvalues, one is q (non-degenerate) and the other is zero (q−1 fold degenerate). Adding
a multiple of identity, we find that the largest eigenvalue is

λmax = eK + q − 1

and

f = − log
(
eK + q − 1

)

Exercise 3.4

The transfer matrix has two indices, each of which are strings of signs ± of length L.

Ts,s′ = exp
{
K
[
s.s′ +

1

2

L−1∑
i=0

(
sisi+1 + s′is

′
i+1

)]}

Exercise 3.5

a) This is a weak version of the so called Perron-Frobenius theorem. For a real symmetric matrix with positive
entries, let the diagonalisation take the form A = QΛQT . Now consider the following optimization problem

max
||x||2=1

||Ax||22 = max
||x||2=1

xTQΛQTQΛQTx

= max
||y||2=1

y≡QTx

||Λy||22 = λ2
max

The first thing to prove is that the maximum is never achieved for vectors having components of both positive and
negative sign; this is seen using the strict inequality

||Ax||22 =
∑
i

(∑
j

Aijxj

)2

<
∑
i

(∑
j

|Aijxj |
)2

=
∑
i

(∑
j

Aij |xj |
)2

This also implies that the largest singular value is unique, otherwise, we would have ||Ax|| = λmax on a great circle
around the unit sphere and this - inevitably - includes vectors with both positive and negative components. There-
fore, the largest eigenvalue of a symmetric, (entry-wise) positive matrix is 1. positive; 2. unique; 3. corresponding
to a positive eigenvector.

b) In the eigenvector basis, this map is as follows

yi →
λiyi√∑
j λ

2
jy

2
j
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After N iterations, this is parallel to (
y0

1 , (
λ2

λ1
)Ny0

2 , (
λ3

λ1
)Ny0

3 , · · ·
)T

Which is clearly approaching the maximal eigenvector.

c) Here is the pseudo-code

1. Pick a random vector ’x’ and normalize it.

2. Let L = |T*x|

3. While | (T*x/|T*x|) - x| > some threshold:

4. x --> T*x/|T*x|

5. L --> |T*x|

6. Report L and x.

d) It is relatively easy to show that if the threshold in the algorithm above is called ε, then the uncertainty in
estimating the logarithm of the largest eigenvalue is given by

δ log ||T ||2 .
1 + r

1− r
ε2

where r is the ratio

r(A) ≡ λ2(T )

λ1(T )

Using, ε = 10−3 we can easily neglect this error in comparison with the systematic error coming from the O(L−2)
terms; therefore it is best to use only the two largest values of L, namely L = 11 and L = 12 to get

f̂0 = −0.929685 · · · and ĉ = 0.504 · · ·
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