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1 Tangent Field Discontinuity at Dipole Layers

Let us consider the closed path that starts from the top of the dipole surface, moves a tangent distance d⃗ℓ, goes
under the surface, moves back the distance d⃗ℓ, and returns to the top, where it started, we have

0 = E⃗above.d⃗ℓ+
D

ε0
+ d⃗ℓ.

∇⃗D
ε

− E⃗under.d⃗ℓ−
D

ε0

or, equivalently

d⃗ℓ.
(
E⃗above − E⃗under +

∇⃗D
ε0

)
= 0.

Since this is required for any tangent vector d⃗ℓ,

E⃗
||
above − E⃗

||
under = −∇⃗D

ε0

2 Regularization

Consider a bounded, localised charge distribution ρ(x), the potential

ϕ(x) =
1

(n− 2)Ωn−1ε0

ˆ
dnx′ ρ(x′)

|x− x′|n−2

is a smooth function with a bounded Laplacian proportional to the charge density. Is there a way to apply the
Laplacian operator without facing demons such as Dirac’s delta function?

One way is to pick a normalised (but not necessarily positive) distribution m(x) with finite moments

ˆ
m(x)dnx = 1;

ˆ
m(x)xrdnx <∞

Then the smooth ϕ may be approximated as the average

ϕa(x) ≡ a−n

ˆ
dnx′ ϕ(x′)m

(x− x′

a

)
And the Laplacian becomes

∇2ϕa(x) =
a−n

(n− 2)Ωn−1ε0

ˆ
dnzρ(z) ∇2

x

ˆ
dny

m
(
x−y
a

)
|z− y|n−2

=
a−n

(n− 2)Ωn−1ε0

ˆ
dnzρ(z) a2∇2

r

ˆ
dny

m(y)

|y+ r/a|n−2
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where r ≡ z− x. For spherically symmetric m, this further simplifies into

∇2ϕa(x) =
Ωn−2a

−n

(n− 2)Ωn−1ε0

ˆ
dnz ρ(z)a2∇2

r

ˆ ∞

0

dy
yn−1m(y)[

y2 + r2/a2
]n/2−1

ˆ +1

−1

du

√√√√ (1− u2)n−3(
1 + 2yra

r2+y2a2u
)n−2

In 3D this becomes

∇2ϕa(x) =
a−1

2ε0

ˆ
d3z ρ(z)∇2

r

ˆ ∞

0

dy ym(y)
(
1 + ay/r −

∣∣1− ay/r
∣∣)

Picking differentm values, allows for different regularizations. As an explicit example, consider a spherical averaging
m, that is

m(y) =
3

4πR3
× 1[y ≤ R]

The Laplacian becomes

∇2ϕa(x) =

ˆ
d3z

ρ(z)

ε0
∇2

r

{
3

8πaR − r2

8π(aR)3 r ≤ aR
1

4πr r ≥ aR

=
−3

4πε0(aR)3

ˆ
|r|≤aR

d3r ρ(x+ r)

= −ρ(x)
ε0

+O(a2) ■

Note that nowhere in our calculation, we faced an improper integral, a delta function, or any other such divergences.

3 Green’s Reciprocity and Applications

To prove Green’s Reciprocity theorem start by writing

˛
∂V

(σϕ′ − σ′ϕ)da = ε0

˛
∂V

(ϕ′∇⃗ϕ− ϕ∇⃗ϕ′).d⃗a = ε0

ˆ
V

∇⃗.
(
ϕ′∇⃗ϕ− ϕ∇⃗ϕ′

)
dV

=

ˆ
V

(ϕρ′ − ϕ′ρ)dV

which is (equivalent to) what we wanted to prove.

As the first application, consider a set of conductors, the total charge on the ith conductor, denoted by Qi, is a
linear function of the potentials Vi:

Qi = CijVj

Now consider two cases: in the first one, the ith conductor is held at unit potential while all the others are grounded,
in the second case, the i′th conductor is at unit potential and the rest are grounded. The reciprocity theorem asserts
that

Qi′ = Q′
i

which implies

Cii′ = C ′
i

As another application, consider a unit point chargeat point x in the presence of grounded conductors. Each
conductor will gain a charge ai(x). As the second case, let each conductor be at some potential Vi while there are
no volume charges; this will induce a potential ViKi(x) at each point. The reciprocity theorem yields∑

i

Vi
(
ai(x) +Ki(x)

)
= 0
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Since Vi are arbitrary, we find

ai(x) = −Ki(x)

An explicit example, would be the case of a point charge near a spherical conductor; we find that the induced charge
is given by

Qind. = −R
a
Q

where R is the conductor’s radius and a is the charge’s distance from the center of the sphere.

4 Jackson; 1-17

a) The energy in such a setting is given by

W =
1

2

∑
i

QiVi =
1

2

∑
i

Vi
∑
j

CijVj =
1

2
Cii =:

C

2

Equivalently, this is given as the volume integral of the energy density

C

2
=
ε0
2

ˆ
V

dV |∇⃗ϕ|2

which is the same as

C = ε0

ˆ
V

dV |∇⃗ϕ|2

b) The true potential, ϕ is that which minimizes the total energy while satisfying the boundary conditions.(This
was proved in the class and in the chapter); therefore, any other ansatz potential ψ that satisfies the boundary
conditions, gives an upper bound for the true capacitance:

C ≤
ˆ
V

dV |∇⃗ψ|2

To prove that this is stationary at the true potential, we use the Euler-Lagrange equations for classical field
theories

0 =
∂|∇⃗ψ|2

∂ψ
= ∂i

∂|∇⃗ψ|2

∂∂iψ
= 2∇2ψ

To prove that this gives a minimum and not a maximum, consider the potential corresponding to the same bound-
ary conditions but with a few added point charges. The energy for such a potential would be infinitely large and
therefore we find that there is no maximum for the variational problem; thereby completing our proof.

5 Jackson 1-18

a) All we need to do is to consider the charges on the surface of S1 as free charges instead of induced ones, then
the problem will consist of all the other conductors held at zero potential and the free charges on the surface of S1.
The solution is (by definition of G) given by

ϕ(x) =
1

4πε0

˛
S1

da′ σ1(x
′)G(x,x′)

The charge-potential formula for the electrostatic energy then yields

W =
1

2

˛
S1

da ϕ(x)σ1(x)
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W =
1

8πε0

˛
S1

da

˛
S1

da′ σ1(x)σ1(x
′)G(x,x′)

b) The electrostatic potential may also be written as

W =
1

2
CV 2 =

Q2

2C

which means

C−1 =
2W

Q2
=

¸
S1
da
¸
S1
da′ σ1(x)σ1(x

′)G(x,x′)

4πε0

[ ¸
S1
da σ1(x)

]2
If σ is considered as a generic charge distribution for the functional C−1, then we have

δC−1 =
Qδ
¸
ϕσda− 2δQ

¸
ϕσda

Q3

=
1

Q2

{‹
S1

dada′σ(x)G(x,x′)δσ(x′)− δQ
}

=
1

Q2

‹
S1

dada′G(x,x′)
[
σ(x)δσ(x′)− δσ(x)σ(x′)

]
= 0

Where in the last line we have used the symmetry property of the Green function. Once again, we know that this
quantity may be made arbitrarily large (consider a point distribution on the surface S1) and therefore, the true
charge distribution σ1 yields the minimal value. In other words

C ≥
4πε0

[ ¸
S1
da σ(x)

]2
¸
S1
da
¸
S1
da′ σ(x)σ(x′)G(x,x′)
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