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1 Max or Min

In the last set of problems, we argued that the action integral is minimized (and not maximized) at the physical
potential by comparing the action with that corresponding to the physical potential around a point charge in the
volume. Here, we directly prove that the action is convex (has positive definite second derivative) to show that the
extremal value is a minimum.

To do this, all we need is to expand the action (1.67) up to second order (it is quadratic, so there will be no
higher order terms) and show that the second order term is positive definite.

I[ψ + χ] = I[ψ] +

ˆ
V

dnx (∇ψ.∇χ)−
ˆ
V

dV gχ−
˛
∂V

da fχ+
1

2

ˆ
V

dV |∇χ|2

We need not look any further; the second order term (in χ) is conspicuously positive definite.

2 Jackson 2.14

I use s instead of ρ in cylindrical coordinates.
a) The potential is well defined at the origin and therefore the negative powers are excluded, also, we know that

a π/2 rotation will turn the potential to minus itself and therefore we can also exclude the constant term and all
odd integer powers. The potential also has odd symmetry (in φ) which rules out the cosine terms. Finally, the
combination of these symmetries, φ→ π

2 − φ further restricts the allowed modes

sin(2mφ) = sin
[
2m(

π

2
− φ)

]
= sin(mπ − 2mφ) = (−1)m+1 sin(2mϕ) ⇒ m = 2n+ 1

That is, in general, we have the following form

ϕ(s, φ) =

∞∑
n=0

An√
π

(s
b

)4n+2

sin
[
(4n+ 2)φ

]
This convention for the unknown coefficients, makes it easy to use the dot-product rule on the boundary to find
the An:

An =
V√
π

ˆ 2π

0

sin
[
(4n+ 2)φ

]
sgn

[
sin(2φ)

]
dφ =

4V

(4n+ 2)
√
π

ˆ (2n+1)π

0

dx sinx =
4v

(2n+ 1)
√
π

Which finally yields

ϕ(s, φ) =
4V

π

∞∑
n=0

(s
b

)4n+2 sin
[
(4n+ 2)φ

]
2n+ 1

b) We start by acting with operator s∂s on the potential

s∂sϕ(s, φ) =
8V

π

∞∑
n=0

(s
b

)4n+2

sin
[
(4n+ 2)φ

]
=

8V

π
Im

{ ∞∑
n=0

(s
b
eiφ

)4n+2}
= −4V

π
Im

{
csch(2w)

}
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where I have introduced the short-hand w ≡ log
(
s
be

iφ
)
. Now if the real field ψ is chosen such that f(w) = ϕ+ iψ

is analytic, (This is always possible for harmonic functions; Cf. complex analysis) then we have

df

dw
=

4iV

π
csch(2w)

This integrates as

f(w) = C +
2iV

π
log tanhw

At w → −∞, this has to have zero real component and therefore we get C = 2V . Finally

ϕ(s, φ) =
2V

π

[
π − arg

(z2 − 1

z2 + 1

)]
with z ≡ s

be
iφ. Since ϕ is bounded between ±V , we only need the tangent of the angle inside the brackets, a simple

calculation yields

ϕ =
2V

π
arctan

[2(s/b)2 sin(2φ)
1− (s/b)4

]

c) On desmos.com, we draw the graph corresponding to

4xy

1− (x2 + y2)2
= C

for constant C, here is the result.

3 Jackson 2.15

a) At first, it is only clear (from the boundary conditions) that we may write

G =
√
2

∞∑
n=1

fn(y;x
′, y′) sin(nπx)

Then the differential equation to satisfy will be

√
2

∞∑
n=1

sin(nπx)
(
− n2π2 + ∂2y

)
fn(y;x

′, y′) = −4πδ(x− x′)δ(y − y′)

Calculating the dot product with
√
2 sin(nπx) yields(
− n2π2 + ∂2y

)
fn = −4

√
2π sin(nπx′)δ(y − y′)

This equation admits a solution in the form

fn =
√
2 sin(nπx′)gn(y; y

′)
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which leads to the expansion

G = 2
∑
n

gn(y; y
′) sin(nπx) sin(nπx′)

and the differential equation becommes (
− n2π2 + ∂2y

)
gn = −4πδ(y − y′)

b) In the empty regions (y ̸= y′) the solution is a linear combination of sinh(nπy) and cosh(nπy); the boundary
condition implies

gn(y, y
′) =

{
A sinh(nπy) y ≤ y′

B sinh[nπ(1− y)] y ≥ y′

the delta function leads to a slope discontinuity:

∂ygn(y
′+; y′)− ∂ygn(y

′−; y′) = −4π

This, along with the continuity condition, gives us the set of equations{
A sinh(nπy′) = B sinh[nπ(1− y′)]

A cosh(nπy′) +B cosh[nπ(1− y′)] = 4
n

which solve as

A =
4

n sinh(nπ)
sinh[nπ(1− y′)]; B =

4

n sinh(nπ)
sinh(nπy′)

Substituting these back into our formula for G, gives us what we were looking for

G =

∞∑
n=1

8

n sinh(nπ)
sin(nπx) sin(nπx′) sinh(nπy<) sinh[nπ(1− y>)]

4 Jackson 2.26

a) In general

ϕ = A+B log s+ Cφ+
∑
p∈R+

{[
D+

p

( s
a

)p
+D−

p

( s
a

)−p
]
sin(pφ) +

[
E+

p

( s
a

)p
+ E−

p

( s
a

)−p
]
cos(pφ)

}
However, the boundary conditions at φ ∈ {0, β} exclude all the terms except the sin ones; they also quantise the
allowed values of n:

ϕ =

∞∑
n=1

sin
(nπφ
β

)[
D+

n

( s
a

)nπ/β
+D−

n

( s
a

)−nπ/β
]

Finally, the boundary condition at s = a, gives

ϕ =

∞∑
n=1

Dn sin
(nπφ
β

)[( s
a

)nπ/β −
( s
a

)−nπ/β
]

b) Keeping only the n = 1 term, the potential is

ϕ = V sin
(πφ
β

)[( s
a

)π/β −
( s
a

)−π/β
]
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The electric field follows immediately

E = −πV
βa

{
ŝ sin

(πφ
β

)[( s
a

)π/β−1
+

( s
a

)−π/β−1
]
+ φ̂ cos

(πφ
β

)[( s
a

)π/β−1 −
( s
a

)−π/β−1
]}

To find the surface charge densities, all we need is to evaluate the normal component of the electric field at the
boundaries and multiply by ε0. At φ = 0 and φ = β this gives

σ0(s) = σβ(s) = −πε0V
βa

[( s
a

)π/β−1 −
( s
a

)−π/β−1
]

similarly, at s = a:

σa(φ) = −2πε0V

βa
sin

(πφ
β

)

c) For β = π, the field simplifies as

E = −V
a
ŷ +O

(a2
s2

)
This is similar to the field from a uniform surface charge density of σ ≡ −ε0V/a

The charge density on the half-cylinder integrates as

dQ

dz
= −2ε0V

a

ˆ π

0

adφ sinφ = −4ε0V = 2× (2aσ)

This is the same as the charge deficiency in other areas

2×
ˆ ∞

a

ds
[
σ − σ0(s)

]
= 2σa2

ˆ ∞

a

ds

s2
= 2aσ

Finally, to visualise the charge density, we draw a diagram (on desmos.com) in which the height (relative to the
conductor surfaces) is proportional to the charge density.
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