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1 Pl(cos γ) in terms of Ylms; A proof for Jackson’s eq. 3.62

For cos γ = cos θ cos θ′+sin θ sin θ′ cos(φ− φ′), and fixed θ′, φ′, the Pl(cos γ) is an angular function of θ, φ and may
therefore be described as a sum over the Ylm spherical harmonics. Let us start by acting on the function with the
angular Laplacian operator

∆ ≡ 1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2φ

we get

∆Pl(cos θ) = P ′′
l (cos γ)

{(∂ cos γ
∂θ

)2
+

1

sin2 θ

(∂ cos γ
∂φ

)2}
+ P ′

l (cos γ)
{
cot θ

∂ cos γ

∂θ
− cos γ − sin θ′

sin θ
cos(φ− φ′)

}
= (1− cos2 γ)P ′′

l (cos γ)− 2 cos γP ′
l (cos γ) = l(l + 1)Pl(cos γ)

Where in the last line, we have used the Legendre differential equation. This means that Pl(cos γ) is an eigenfunction
of the operator ∆ with the eigenvalue l(l + 1) which implies

Pl(cos γ) =

+l∑
m=−l

Alm(θ′, φ′)Ylm(θ, φ)

where

Alm(θ′, φ′) ≡
ˆ
S2
dΩY ∗

lm(Ω)Pl(cos γ)

=

ˆ π

0

dγ sin γ

ˆ 2π

0

dβ Y ∗
l0(γ, β)

[√ 4π

2l + 1
Y ∗
lm

(
θ(γ, β | θ′, φ′), φ(γ, β | θ′, φ′)

)]
= Bl0(θ

′, φ′)

where Blm satisfy √
4π

2l + 1
Y ∗
lm

(
θ(γ, β | θ′, φ′), φ(γ, β | θ′, φ′)

)
=

+l∑
m=−l

Blm(θ′, φ′)Ylm(γ, β)

At γ = 0 (at the primed z-axis, or even more explicitly at θ = θ′ and φ = φ′) all the m ̸= 0 terms vanish and this
gives

Bl0(θ
′, φ′)

√
2l + 1

4π
=

√
4π

2l + 1
Y ∗
lm

(
θ′, φ′)

Finally, substituting this back to Alm, we get

Alm(θ′, φ′) =
4π

2l + 1
Y ∗
lm(θ′, φ′)

which completes our proof for the addition theorem:

Pl(cos γ) =
4π

2l + 1

+l∑
m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ)
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2 Jackson; 3.2

a) The potential may be written as

ϕ(r, θ) =

Al

(
r
R

)l

Pl(cos θ) r ≤ R

Al

(
R
r

)l+1

Pl(cos θ) r ≥ R

The constants are found by the field discontinuity condition

σ(cos θ) = ε0Er

∣∣∣R+

R−
= ε0

∑
l

2l + 1

R
AlPl(cos θ)

Using the orthogonality, we get

Al =
Q

8πε0R

ˆ cosα

−1

Pl(x)dx

Using Jackson’s eq. 3.28

Pl(x) =
1

2l + 1

[
P ′
l+1(x)− P ′

l−1(x)
]

which holds for P−1(x) = C ∈ R, we get

Al =
Q

8πε0R

Pl+1(cosα)− Pl−1(cosα)

2l + 1

therefore

ϕ(r, θ) =
Q

8πε0R

∞∑
l=0

Pl+1(cosα)− Pl−1(cosα)

2l + 1
Pl(cos θ)

{
(r/R)l r ≤ R

(R/r)l+1 r ≥ R

For r ≫ R and α = 0, this is

ϕ =
Q(1− C)

8πε0r
+O(1/r2)

which is the correct answer provided that C = −1

b) This is given by

E(O) = −ẑ lim
r→0+

∂ϕ

∂r

∣∣∣
θ=0

=
Qẑ

24πε0R2

[
1− P2(cosα)

]
=

Q sin2 α ẑ

16πε0R2

c) The potential:

ϕ(O) =
Q

4πε0R
cos2(α/2) =

Qtot.

4πε0R

For small cap, the total charge approaches Q and for large cap, the total charge approaches that of a disk of radius
R(π − α) with the same surface density.

The field: The expression that we found in the last part for the field, has the same limiting behavior for both
large and small caps: For large caps, this is similar to the field generated by a point charge at the south pole of
magnitude given by the product of the surface density and the cap area. In the small cap limit, the setting may
be regarded as the superposition of the full spherical shell (with no net field) and a cap of negative charge in the
north pole; the field will be the same.
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3 Jackson; 3.3

a) First, let us find the proportion constant for the surface charge density in terms of the potential. To do this we
evaluate the potential at the origin:

V =

ˆ R

0

2πσrdr

4πε0r
√
1− (r/R)2

=
σR

2ε0

ˆ 1

0

dx√
1− x2

=
πσR

4ε0
⇒ σ =

4ε0V

πR

The potential for r ≥ R is given by the Coulomb integral

ϕ(r, θ) =
V

π2Rr

ˆ R

0

r′dr′√
1− (r′/R)2

∞∑
l=0

(r′
r

)l
ˆ 2π

0

dφ′Pl(cos γ)

=
4V

πRr

ˆ R

0

r′dr′√
1− (r′/R)2

∞∑
l=0

(r′
r

)l 1

2l + 1

ˆ 2π

0

dφ′
+l∑

m=−l

Y ∗
lm(

π

2
, φ′)Ylm(θ, φ)

=
2V

πRr

ˆ R

0

r′dr′√
1− (r′/R)2

∞∑
l=0

(r′
r

)l

Pl(0)Pl(cos θ)

=
V

π

∞∑
l=0

(R
r

)2l+1

P2l(cos θ)P2l(0)

ˆ 1

0

xldx√
1− x

=
V

π

∞∑
l=0

(R
r

)2l+1

P2l(cos θ)
(−)l

(
2l
l

)
4l

ˆ π

0

dx sin2l+1(x)

where in the last line we have made use of the ’generating function’ formula for Legendre polynomials to evaluate
P2l(0). Now if we define

Jn ≡
ˆ π

0

dx sin2n+1(x)

then an integration by parts gives (for n > 0)

Jn =
2n

2n+ 1
Jn−1; J0 = 2. =⇒ Jn =

2

2n+ 1

4n(
2n
n

)
This proves what we wanted

ϕout.(r, θ) =
2V

π

∞∑
l=0

(−)l

2l + 1

(R
r

)2l+1

P2l(cos θ)

b) Due to the symmetry of the problem, the potential is the same in both the northern and the southern
hemisphere. We only find it in the northern hemisphere.

ϕ =

∞∑
l=0

AlPl(cos θ)
( r
R

)l

The Dirichlet boundary condition at θ = π
2 excludes all the even ls except the l = 0 term:

ϕ = V +

∞∑
l=0

BlP2l+1(cos θ)
( r
R

)2l+1

To find Bl, thanks to Jackson’s hint, we can use either the Neumann boundary condition at θ = π
2 :

2V/π√
1− x

= −
∞∑
l=0

BlP
′
2l+1(0)x

l ⇒ Bl =
−2V

π

(2l)!

4l(l!)2
1

P ′
2l+1(0)
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or the Dirichlet boundary condition found from the previous part at r = R:

V +

∞∑
l=0

BlP2l+1(|x|) =
2V

π

∞∑
l=0

(−)l

2l + 1
P2l(x) ⇒

∞∑
n=0

Bn

ˆ 1

0

P2n+1(x)P2l(x)dx = V
[ (−)l(2/π)

(2l + 1)(4l + 1)
− δl0

]
Clearly, the Neumann bc is much more convenient to use. It remains to find the coefficients P ′

2l+1(0). Using
Jackson’s eq. 3.28 and the initial condition P ′

1(0) = 1, we get

P ′
2l+1(0) =

l∑
n=0

(4n+ 1)
(−1

4

)n(2n
n

)
=

1

2

(−1

4

)l

(l + 1)

(
2l + 2

l + 1

)
Which gives

Bl =
−2V

π

(−)l

2l + 1

therefore, for r ≤ R we get

ϕins.(r, θ) = V − 2V

π

∞∑
l=0

(−)l

2l + 1
P2l+1(| cos θ|)

( r
R

)2l+1

As a bonus, in regard for Jackson’s hint about the charge distribution on the disk, we get an identity:

π

2
=

∞∑
n=0

(−)n

2n+ 1

[
P2n(x) + P2n+1(|x|)

]
A plot for the first 5 terms in this series is shown below

c)

C =
1

V

ˆ R

0

2πrdr
4ε0V/πR√
1− (r/R)2

= 8ε0R

ˆ 1

0

xdx√
1− x2

= 8ε0R

4 Jackson; 3.5

We find the solution using two different approaches; the uniqueness theorem guarantees their equivalence.
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a) First, we may use the Green function method, eq. 1.42 to get

ϕ(r, θ, φ) =
−a2

4π

ˆ
S2
dΩ′V (Ω′)

∂GD(r, θ, φ; r′, θ′, φ′)

∂r′

Using the method of images, it is easy to compute the GD and its derivative as

∂GD(r, θ, φ; r′, θ′, φ′)

∂r′

∣∣∣
r′=a

=
r2 − a2

a(r2 + a2 − 2ar cos γ)3/2

This gives

ϕ(r, θ, φ) =
a(a2 − r2)

4π

ˆ
dΩV (Ω)

(a2 + r2 − 2ar cos γ)3/2

b) We may also expans the potential as

ϕ =

∞∑
l=0

+l∑
m=−l

AlmYlm(θ, φ)
( r
a

)l
To find the coefficients, it suffices to integrate the potential at r = a against Y ∗

lm:

Alm =

ˆ
S2
dΩV (Ω)Y ∗

lm(Ω)

This completes what we wanted to prove.

5 Jackson; 3.7

a) The potential is the sum of Coulomb terms

ϕ(r, θ) =
q

4πε0r

[ 1√
1 + (a/r)2 − 2(a/r) cos θ

+
1√

1 + (a/r)2 + 2(a/r) cos θ
− 2

]
In the quadrupole limit, this is

ϕ(r, θ) =
Q

2πε0r3

(3 cos2 θ − 1

2

)

b) Using the method of images, the potential is the sum of 6 Coulomb terms

ϕ(r, θ) =
q

4πε0r

{[
1 + (a/r)2 − 2(a/r) cos θ

]−1/2
+
[
1 + (a/r)2 + 2(a/r) cos θ

]−1/2 − 2

− b/a
[
1 + (b2/ar)2 − 2(b2/ar) cos θ

]−1/2 − b/a
[
1 + (b2/ar)2 + 2(b2/ar) cos θ

]−1/2
+

2r

b

}
In the quadrupole limit, this becomes

ϕ(r, θ) =
Q

4πε0r3

{
3 cos2 θ − 1−

(r5
b5

)
(3 cos2 θ − 1)

}
=

Q

2ε0r3
P2(cos θ)

(
1− r5

b5

)
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6 Jackson; 3.11

In this problem, without loss of generality, we will work in the units system where a = 1. The factors of a may be
properly re-introduced using dimensional analysis. We will also use x instead of ρ as the independent variable.

a) Using the Bessel equation, we may write

0 =

ˆ 1

0

dx xJα(qx)
[ 1
x

d

dx
x
d

dx
Jα(kx) +

(
k2 − α2

x2
)
Jα(kx)

]
= xJα(qx)J

′
α(kx)

∣∣∣1
0
−
ˆ 1

0

dx x
[
J ′
α(kx)J

′
α(qx) +

(
k2 − α2

x2
)
Jα(kx)Jα(qx)

]
= −λJα(k)Jα(q)−

ˆ 1

0

dx x
[
J ′
α(kx)J

′
α(qx) +

(
k2 − α2

x2
)
Jα(kx)Jα(qx)

]
Antisymmetrizing both sides w.r.t k and q, we get

(k2 − q2)

ˆ 1

0

dx xJα(kx)Jα(qx) = 0

b) First, let us show that these functions are indeed complete. The Bessel equation may be re-written in the
eigen-function form [ 1

x

d

dx
x
d

dx
− α2

x2

]
ψn(x) = −y2αn(λ)ψn(x)

all we need to show (at this level of mathematical rigor) is that the operator on the left hand side is Hermitean
w.r.t the dot product

⟨ϕ, ψ⟩ ≡
ˆ 1

0

dx xϕ∗(x)ψ(x)

over the set of functions with proper boundary conditions. The second term is clearly Hermitean, so let us deal
with the first term.

⟨ϕ, 1
x

d

dx
x
d

dx
ψ⟩ =

ˆ 1

0

dx ϕ∗
d

dx
x
dψ

dx

= xϕ∗ψ′
∣∣∣1
0
−
ˆ 1

0

dx
dϕ∗

dx
x
dψ

dx

= −λϕ∗(1)ψ(1)− x
dϕ∗

dx
ψ
∣∣∣1
0
+

ˆ 1

0

dx x
( 1

x

d

dx
x
d

dx
ϕ(x)

)∗
ψ(x) =

〈 1

x

d

dx
x
d

dx
ϕ, ψ

〉
■

So far, we know how to expand a function with the right boundary conditions as

|f⟩ =
∑
n

An |n⟩ ; An =
⟨n|f⟩
⟨n|n⟩

It remains to compute the denominator. Once again, we use the Bessel equation to write

0 =

ˆ 1

0

dx x2J ′
α(kx)

[ 1
x

d

dx
x
d

dx
Jα(kx) +

(
k2 − α2

x2
)
Jα(kx)

]
=
k

2
J ′2(k)− α2

2k
J2(k) + k

ˆ 1

0

dxx2Jα(kx)
d

dx
Jα(kx)

=
k

2
J ′2(k)− α2

2k
J2(k) + kJ2

α(k)− 2k ⟨k|k⟩ − k

ˆ 1

0

dxx2Jα(kx)
d

dx
Jα(kx)

=
k

2
J ′2(k)− α2

2k
J2(k) +

k

2
J2
α(k)− k ⟨k|k⟩
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Where use has been made of α > 0. Also, to get to the last line, we have substituted the whole equation with the
arithmetic mean of the two above lines. Finally, we get

⟨n|n⟩ = 1

2

[
J ′2
α (kn) +

(
1− α2/k2n

)
J2
α(kn)

]
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