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1 Coulomb’s Law From Fourier Transforms

In the Fourier space, Poisson’s equation ∇2ϕ = −ρ/ε0 is written as

ϕ̃(k) =
ρ̃(k)

k2ε0

1.1 n ≥ 3 dimensions

For a point charge at x′ and in n ≥ 3 dimensions, we have

ϕ̃ =
(2π)−n/2

k2ε0
e−ik.x′

Which leads to the Green function

ϕ =
(2π)−n

ε0

ˆ
dnk

eik.(x−x′)

k2
=

Ωn−2

(2π)nε0

ˆ ∞

0

dk

k

ˆ π

0

dθ(k sin θ)n−2eikr cos θ

=
Ωn−2

(2π)nε0

ˆ ∞

0

dk kn−3

ˆ +1

−1

dx cos(krx)(1− x2)(n−3)/2

=
Ωn−2

(2π)nε0rn−2

ˆ ∞

0

dy yn−3

ˆ +1

−1

dx cos(xy)(1− x2)(n−3)/2

Which is clearly proportional to r2−n. From Gauss’ law, we already know that this will be

ϕ =
1

rn−2(n− 2)Ωn−1ε0

This is consistent with what we found only if

ˆ ∞

0

dy yn−3

ˆ +1

−1

dx cos(xy)(1− x2)(n−3)/2 =
(2π)n

(n− 2)Ωn−1Ωn−2

using Ωn−1 = 2 πn/2

Γ(n/2) this is

ˆ ∞

0

dy yn−3

ˆ +1

−1

dx cos(xy)(1− x2)(n−3)/2 =

√
π2nΓ

(
n/2

)
Γ
(
n−1
2

)
4(n− 2)

Define

ψn(y) ≡
ˆ +1

−1

dx cos(xy)(1− x2)(n−3)/2
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It is readily seen that these satisfy
ψ′′
n + ψn = ψn+2

Also, integration by parts allows us to write the first order derivative as

ψ′
n = −

ˆ +1

−1

dx sin(xy)x(1− x2)(n−3)/2 =
1

y

[
(n− 3)ψn−2 − (n− 2)ψn

]
Finally, we may also use integration by parts to get

ψn+2 =
n− 1

y2
[
(n− 2)ψn − (n− 3)ψn−2

]
The three equations combine to give us

ψ′′
n +

n− 1

y
ψ′
n + ψn = 0

In fact, there was a smart way to guess this directly, by interpreting ψn as a spherical wave form in n dimensions.
In any case, ψn(0) <∞ gives

ψn(x) = An

Jn/2−1(x)

yn/2−1

Comparison at y = 0 gives

An = Γ
(n
2

)
2n/2

ˆ 1

0

dx (1− x2)(n−3)/2 =
√
π2n/2−1Γ

(n− 1

2

)
At last, to prove consistency with the constant found by Gauss’ law, we need to show

ˆ ∞

0

dy
(y
2

)(n−4)/2
Jn

2 −1(y) = Γ
(n
2
− 1

)
For n = 3, 4, this checks correct; beyond that, the RHS gives only the regularized value of the integral.

1.2 n = 2 dimensions

For 2D, the same approach gives

ϕ =
1

4π2ε0

ˆ
d2k

eik.r

k2
=

1

4π2ε0

ˆ ∞

0

dk

k

ˆ 2π

0

eikr cosφdφ

Using Bessel’s integral form, this is

ϕ =
1

2πε0

ˆ ∞

0

dk

k
J0(kr)

To evaluate the integral, we use Frullani’s identity

ˆ ∞

0

dx

x

[
f(ax)− f(bx)

]
= log

(a
b

)[
f(∞)− f(0)

]
In this case, this yields

ϕ(r)− ϕ(r0) =
−1

2πε0
log

(
r

r0

)
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1.3 n = 1 dimensions

In 1D, the Fourier method breaks down and needs regularization techniques. The integral form is

ϕ =
1

2πε0

ˆ
dk

k2
eikr

Formally, this satisfies the Poisson equation

ϕ′′ = − 1

ε0
δ(x) ⇒ ϕ = A+Bx− |x|

2ε0

We pick the symmetric solution and drop the constant to get

ϕ = − |x|
2ε0

2 Q-Q interaction

In n dimensions, the quadrupole tensor is defined as

Qij = n⟨xixj⟩ − δij⟨x2⟩; ⟨f(x)⟩ ≡
ˆ
dnxρ(x)f(x)

The interaction energy is a scalar, with proper dimensions, made out of two symmetric, traceless tensors and one
vector. The most general form is

U =
QijQ

′
kl

(n− 2)Ωn−1ε0rn+6

[
ar4δikδjl + br2rjrlδik + crirjrkrl

]
where a, b, c are dimensionless constants to be found.

For a sample quadrupole consisting of 2 positive (+q) charges at x±an̂ and a −2q charge located at x, (qa2 = Q
and a is very small) the quadrupole tensor is

Qij = Q(nn̂in̂j − δij)

and its energy is given by

U = Q
∂2ϕ

∂n2

Since all quadrupoles are a linear combination of such ”rank-1” (except the δij term that reduces the trace)
quadrupoles, it costs us no generality to consider the example of a quadrupole at the origin, aligned with the z axis.
The potential is given by

ϕ =
q

(n− 2)Ωn−1ε0rn+4

[(
1 +

a2

r2
− 2

a

r
cos θ

)1−n/2
+

(
1 +

a2

r2
+ 2

a

r
cos θ

)1−n/2 − 2
]
=

Q

Ωn−1ε0rn
(n cos2 θ − 1)

Then let Q′
ij be also of the same kind (rank-1) and located at a distance r, and an angle θ. We will consider different

alignment directions each time:

i) If the second quadrupole is aligned along the radial direction, then the energy is

U = Q′ ∂
2

∂r2
[ Q

Ωn−1ε0rn
(n cos2 θ − 1)

]
=
QQ′(nẑiẑj − δij)(nr̂kr̂l − δkl)

(n− 2)Ωn−1ε0rn+6

[
ar4δikδjl + br2rjrlδik + crirjrkrl

]
this yields

na+ (n− 1)(b+ c) = n(n+ 1)(n− 2)
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ii) If the second quadrupole is aligned along θ̂, then

U = Q′(1
r
∂r +

1

r2
∂2θ

)[ Q

Ωn−1ε0rn
(n cos2 θ − 1)

]
=
QQ′(nẑiẑj − δij)(nθ̂kθ̂l − δkl)

(n− 2)Ωn−1ε0rn+6

[
ar4δikδjl + br2rjrlδik + crirjrkrl

]
this time we get two equations {

3n(n− 2) = an(n− 1) + b+ c

(n− 2)(n+ 4) = an+ b+ c

The bad news is that these new equations are not independent from the previous one and we will have to consider
another case. The good news is that they are at least consistent and yield

a =
2(n− 2)

n
, b+ c = n2 − 4

iii) To find b− c, we need the second quadrupole to be neither perpendicular nor parallel to r̂. We also need to
avoid the equator plane. So let us put the second quadrupole at θ = 45◦ and make it aligned with ŝ. The energy is

U = Q′( 1

2r
∂r +

1

2
∂2r − 1

r2
∂θ +

1

2r2
∂2θ

)[ Q

Ωn−1ε0rn
(n cos2 θ − 1)

]∣∣∣
θ=π

4

=
QQ′(nẑiẑj − δij)(nŝkŝl − δkl)

(n− 2)Ωn−1ε0rn+6

[
ar4δikδjl + br2rjrlδik + crirjrkrl

]∣∣∣
θ=π
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After a relatively long calculation, this will yield

c =
n− 2

n
(n2 + 2n+ 8)

and at last

b = −8(n− 2)

n

In its full glory, the interaction formula is

U =
QijQ

′
kl

nΩn−1ε0rn+6

[
2r4δikδjl − 8r2rjrlδik + (n2 + 2n+ 8)rirjrkrl

]
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