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1 Classius-Mossotti Equation

In this model, each atom/molecule, is considered to be a sphere with the radius determined via
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The particle (atom or molecule) feels some field Eqse due to the presence of other particles and the external field
and becomes polarized some amount
p= O‘Eelse

E.se at the origin is the same as the average field over the sphere since the Laplacian vanishes for Egys.. Therefore
we have
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Where Ege¢ is the field due to the dipole p at the origin. According to Jackson’s eq. 4.18, and the linear relation
ship p = aEgse we get
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2 Jackson; 3.15

a) Inside and outside the sphere, V.J = 0 implies the Laplace equation for the electrostatic potential. On the
boundary, the potential is continuous while the normal component of the electric field satisfies
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This leads to the unique potential
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comparison with the potential form for a dipole we get
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3 Jackson; 4.1

a) For the configuration (a):
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For even m, this is zero, for m = 2r + 1, this is
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For even [, this also vanishes, for [ = 2s + 1, we may use Jackson’s eq. 3.50 to find
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which further simplifies to
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The first few moments are
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For the configuration (b) only even [ (I = 2s > 0) and zero m survive
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c¢) The potential is expanded as
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on the equator plane, the dominant term is
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In the units where ¢ = a = g9 = 1, this looks like below

d) From Coulomb’s law, the potential is
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which is plotted as



4 Jackson; 4.7

a,b) Instead of using the ¢, moments, we expand the potential as
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the charge density is written as
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The Poisson equation then becomes
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From now on, we will use the system of units in which pg = a = g9 = 1. (The answers will be 64mweq times

Jackson’s). For [ = 0, the equation integrates as
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The choice A = —24 is the only one that guarantees finite field at the origin. Then
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To set ¢p(oc0) =0, we find B =0 and
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A series expansion gives
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Which clearly gives C' = —2/15
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Therefore the potential is
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In the large r limit, we may drop the exponentially decaying terms and get

And therefore

Finally, near the origin
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¢) Bringing back the unit constants, we know that for large r, the monopole term is
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The interaction term is given by
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at the origin, this is
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The total sign in the equation above is irrelevant. Substituting py we get
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For a hydrogen atom (Z = 1), this is



5 Jackson; 4.13
Far away from the edge where the liquid ends, the potential is given as
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Therefore the free charge per unit length is
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therefore the capacitance per unit length is
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If the liquid rises an infinitesimal amount dh, then the energy increases as
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meanwhile, the voltage supplies need to do work in order to keep the potential difference unchanged. The work

done is
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therefore, the difference is due to the potential difference and we get
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