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1 Classius-Mossotti Equation

In this model, each atom/molecule, is considered to be a sphere with the radius determined via

δN

δV
= n =

3

4πR3

The particle (atom or molecule) feels some field Eelse due to the presence of other particles and the external field
and becomes polarized some amount

p = αEelse

Eelse at the origin is the same as the average field over the sphere since the Laplacian vanishes for Eelse. Therefore
we have

Emacroscopic = Eelse +
3

4πR3

ˆ
r≤R

d3xEself

Where Eself is the field due to the dipole p at the origin. According to Jackson’s eq. 4.18, and the linear relation
ship p = αEelse we get

Emacroscopic = Eelse −
p

4πε0R3
=

(
1− α

4πε0R3

)
Eelse

Finally

P = χeε0Emacroscopic =
3p

4πR3
=

3α

4πR3

(
1− α/ε0

4πR3

)−1

Emacroscopic

which yields

χe ≡ κe − 1 =
nα/ε0
1− nα

3ε0

2 Jackson; 3.15

a) Inside and outside the sphere, ∇.J = 0 implies the Laplace equation for the electrostatic potential. On the
boundary, the potential is continuous while the normal component of the electric field satisfies

σ′E+
r = σE−

r + σF cos θ

This leads to the unique potential

ϕ =
aFσ

σ + 2σ′ cos(θ)


r
a r ≤ R

a2

r2 r ≥ R

comparison with the potential form for a dipole we get

p =
4πε0a

3Fσ

σ + 2σ′ ẑ
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b)

I = σ′
ˆ π

2

0

2πa2 sin θ dθ
2Fσ

σ + 2σ′ cos θ =
2πFσσ′a2

σ + 2σ′

Pe = 2πσ′
ˆ ∞

a

dr r2
ˆ π

0

dθ sin θ
F 2σ2a6

(σ + 2σ′)2
1 + 3 cos2 θ

r6
=

8πF 2σ2σ′a3

3(σ + 2σ′)2

therefore

Re =
Pe

I2
=

2

3πaσ′ ; Ve = IRe =
4Faσ

3(σ + 2σ′)

c)

Pi =
4

3
πa3σ

(
F − Fσ

σ + 2σ′

)2

=
16πa3F 2σσ′2

3(σ + 2σ′)2

therefore

r =
Pi

I2
=

4

3πaσ

d)

Vt = I(Re + r) =
4

3
Fa

IVt =
4

3
πa3σF

2Fσ′

σ + 2σ′ =
4

3
πa3σFEi = PBat.

3 Jackson; 4.1

a) For the configuration (a):

qlm = qal
[
Y ∗
lm(

π

2
, 0) + Y ∗

lm(
π

2
,
π

2
)− Y ∗

lm(
π

2
, π)− Y ∗

lm(
π

2
,−π

2
)
]

= qal

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (0)[1 + (−i)m − (−1)m − im]

For even m, this is zero, for m = 2r + 1, this is

ql,2r+1 = 2qal

√
2l + 1

4π

(l − 2r − 1)!

(l + 2r + 1)!
P 2r+1
l (0)

[
1− (−)ri

]
For even l, this also vanishes, for l = 2s+ 1, we may use Jackson’s eq. 3.50 to find

q2s+1,2r+1 = qa2s+1

√
4s+ 3

4π

(2s− 2r)!

(2s+ 2r + 2)!

(−)s+r+1

4s
(2s+ 2r + 2)!

(s− r)!(s+ r + 1)!

[
1− (−)ri

]
which further simplifies to

q2s+1,2l+1 = q
a2s+1

(−4)s

√
4s+ 3

4π

(
2s− 2r

s− r

)(
2s+ 2r + 2

s+ r + 1

)[
(−1)r+1 + i

]
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The first few moments are

q1,±1 = qa

√
3

2π
(∓1 + i)

q3,±1 =
qa3

4

√
21

π
(±1− i)

q3,±1 =
qa3

4

√
35

π
(±1− i)

For the configuration (b) only even l (l = 2s > 0) and zero m survive

q2s,0 = qa2s
√

4s+ 1

π
; s = 1, 2, · · ·

c) The potential is expanded as

ϕ =
q

2πε0r

∞∑
s=1

(a
r

)2s
P2s(cos θ)

on the equator plane, the dominant term is

ϕ = − qa2

4πε0r3

In the units where q = a = ε0 = 1, this looks like below

d) From Coulomb’s law, the potential is

ϕ =
q

2πε0

( 1√
r2 + a2

− 1

r

)
which is plotted as
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4 Jackson; 4.7

a,b) Instead of using the qlm moments, we expand the potential as

ϕ =

∞∑
l=0

ψl(r)Pl(cos θ)

the charge density is written as

ρ =
2

3
ρ0
( r
a

)2
e−r/a

[
P0(cos θ)− P2(cos θ)

]
The Poisson equation then becomes

[ d
dr
r2
d

dr
− l(l + 1)

]
ψl(r) = −r

2

ε0


2
3ρ0

(
r
a

)2
e−r/a l = 0

− 2
3ρ0

(
r
a

)2
e−r/a l = 2

0 o.w.

From now on, we will use the system of units in which ρ0 = a = ε0 = 1. (The answers will be 64πε0 times
Jackson’s). For l = 0, the equation integrates as

ψ′
0(r) =

2

3
e−r

(
r2 + 4r + 12 +

24

r
+

24

r2
+
Aer

r2
)

The choice A = −24 is the only one that guarantees finite field at the origin. Then

ψ0(r) = B − 2

3

r3 + 6r2 + 18r + 24(1− er)

rer

To set ϕ(∞) = 0, we find B = 0 and

ψ0(r) = −2

3

r3 + 6r2 + 18r + 24(1− er)

rer

For ψ2 we have ( d
dr
r2
d

dr
− 6

)
ψ2(r) =

2

3
r4e−r
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A series expansion gives

ψ2(r) = Cr2 +
2

3

∞∑
n=4

(−)nrn

(n− 4)!(n− 2)(n+ 3)

= Cr2 +
2

3

r5er + 720(1 + r + r2/2 + r3/6− er) + 30r4 + 5r5

5r3er

Which clearly gives C = −2/15

ψ2(r) =
288(1 + r + r2/2 + r3/6− er) + 12r4 + 2r5

3r3er

Therefore the potential is

ϕ = ψ0(r) + ψ2(r)
3 cos2 θ − 1

2

In the large r limit, we may drop the exponentially decaying terms and get

ψ0(r) ≈
16

r
; ψ2(r) ≈ −96

r3

And therefore

ϕ ≈ 16

r

[
1− 3

r2
(3 cos2 θ − 1)

]

Finally, near the origin

ϕ ≈ 4− 2

15
r2P2(cos θ)

c) Bringing back the unit constants, we know that for large r, the monopole term is

ϕ =
16ρ0a

3

ε0r
=

e

4πε0r

therefore
e = 64πρ0a

3

The interaction term is given by
U = ZeQ∂2zϕ

at the origin, this is

U = ZeQ× 4ρ0
15ε0

The total sign in the equation above is irrelevant. Substituting ρ0 we get

ν =
U

h
=

Ze2Q

80πε0a3h
=

ZQαc

120πa3

For a hydrogen atom (Z = 1), this is

ν ≈ 3.9MHz
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5 Jackson; 4.13

Far away from the edge where the liquid ends, the potential is given as

ϕ = V
log(s/a)

log(b/a)

Therefore the free charge per unit length is

cV =
2πεV

log(b/a)

therefore the capacitance per unit length is

c =
2πε

log(b/a)

If the liquid rises an infinitesimal amount dh, then the energy increases as

dE =
πε0χeV

2

log(b/a)
dh

meanwhile, the voltage supplies need to do work in order to keep the potential difference unchanged. The work
done is

dW = V dQ = V 2dc =
2πε0χeV

2

log(b/a)
dh

therefore, the difference is due to the potential difference and we get

U = −πε0χeV
2

log(b/a)
h

Adding the gravitational energy, this is

U = −πε0χeV
2

log(b/a)
h+

π

2
ρg(b2 − a2)h2

The equilibrium is at

h =
χeε0V

2

ρg(b2 − a2) log(b/a)

which gives

χe =
ρgh(b2 − a2) log(b/a)

ε0V 2
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