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1 Jackson; 6.4

a) In the steady state, there should be no force acting on a charged particle rotating around the z axis. This gives

E = −ωsφ̂×B = ωs(Bsẑ−Bz ŝ)

And therefore the charge density is

ρ = ε∇.E = ε0ωs(µ0Jφ − 2

s
Bz)

=
ω2s2

c2
ρ− 2ε0ωBz

which solves as

ρ =
−2ε0ωBz

1− ω2s2

c2

From now on, we shall drop all terms of order ω2 in comparison with first order corrections since they are all
inevitably suppressed by 1/c2 factors (dimensional analysis). Therefore, ρ is given by the unperturbed (non-rotating)
mgnetic field.

ρ ≈ −2ε0ωBz ≈ −4ωM

3c2
=

−mω

πc2R3

b, c) Integrating the internal electric field, we find that the electric potential on the surface of the sphere is given
by

Φ(R, θ) = A+
1

2
ωBzR

2 sin2 θ = A+
µ0ωm

4πR
sin2 θ = −µ0ωm

6πR
P2(cos θ)

Where in the last line, we have used the fact that the sphere has zero net charge to speculate that the potential
will have no monopole terms. This immediately yields the potential outside the sphere to be

Φ(r ≥ R, θ) = −µ0ωmR2

6πr3
P2(cos θ)

This is clearly a pure quadrupole potential. With only a single non-vanishing component

q20 = −
√

5

π

ωmR2

3c2

Therefore

Q33 = −4ωmR2

3c2

Q12 = Q21 = Q13 = Q31 = Q23 = Q32 = 0 , Q11 = Q22

Finally, TrQ = 0 gives

Q11 = Q22 = −Q33/2
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The surface charge density is given by

σ(θ) = ε0(E
out
r − Ein

r ) =
mω

2πR2c2

(
− P2(cos θ) + sin2 θ

)
=

mω

3πR2c2

[
1− 5

2
P2(cos θ)

]

d) This is simply given by the potential difference between the north pole and the equator

Φ(R, π/2)− Φ(R, 0) = −µ0ωm

6πR

[
P2(0)− P2(1)

]
=

µ0mω

4πR

2 Jackson; 6.12

The admittance is given by

Y =
1

Z
=

1

R− iX
=

R+ iX

R2 +X2
= G− iB

This gives

G =
R

R2 +X2
; B =

−X

R2 +X2

a) Using V = ZI, we may write

1

|Vi|2

ˆ
V

σ|E|2dV =
1

R2 +X2

1

|Ii|2

ˆ
V

σ|E|2dV =
R

R2 +X2
= G ■

b) Using V = ZI, we may write

− 4ω

|Vi|2

ˆ
V

(wm − we)dV =
−1

R2 +X2

4ω

|Ii|2

ˆ
V

(wm − we)dV =
−X

R2 +X2
= B ■

3 Jackson; 6.13

a) The relevant, phasor (harmonic time dependence in the form of e−iωt) version of Maxwell’s equations are

∇.B = ∇.E = 0; ∇×B =
−iω

c2
E; ∇×E = iωB

Considering a power expansion in ω as

E =

∞∑
n=0

Enω
n; B =

∞∑
n=0

Bnω
n

we find the recursive equations

∇ ·Bn = ∇ ·En = 0; ∇×En = iBn−1; ∇×Bn =
−i

c2
En−1
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with the initial conditions

E0 =
Q

ε0ab
(−ẑ) ; B0 = 0

Where Q denotes the charge on each plate in the DC scenario. Here, the z axis is perpendicular to the capacitor
plates, the x axis is aligned with the edges of length a and finally, the y axis is aligned with the edges of length
b. The symmetry of the problem (ignoring fringing effects) asserts ∂y = 0. The first recursive equation has the
solution (considering symmetries and neglecting fringing effects)

B1 = (A+
iµ0Qx

ab
)ŷ

At the free edge of the plane, the current is zero and therefore, we expect the magnetic field to vanish as well. This
sets the constant A and gives

B1 =
iµ0Q

ab
(x− a)ŷ

Then, we can plug this in to the second equation and get

E2 =
[µ0Q

2ab
(x− a)2 +B

]
ẑ

Once again, at the free edge, where the B field vanishes, we expect no corrections and therefore

E2 =
µ0Q

2ab
(x− a)2ẑ

b) The current is given by I = −iωQ(ω) and therefore

|I|2 = ω2Q2(ω)

This time Q(ω) is the true charge on plates given by the Gauss law as

Q(ω) = −bε0

∞∑
n=0

ωn

ˆ a

0

En(x).ẑ dx

= Q
[
1− 1

6

(aω
c

)2
+ · · ·

]

This gives the reactance as

X =
1

ωQ2(ω)

ˆ
V

(B2

µ0
− ε0E

2
)
dV

≈ bd

ωQ2

[µ0Q
2ω2a

3b2
− Q2

ε0ab2

(
1− ω2a2

3c2

)][
1 +

1

3

(aω
c

)2]
≈ ω

µ0ad

3b
− 1

ω

d

ε0ab
= ωL− 1

ωC

where

L =
µ0ad

3b
; C =

ε0ab

d
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4 Jackson; 6.14

a) The recursive equations and the initial conditions are similar to the previous problem

∇ ·En = ∇ ·Bn = 0 ; ∇×En = iBn−1 ; ∇×Bn =
−i

c2
En−1

E0 = −ẑ
Q

πε0a2
; B0 = 0

Then we get

B1 = φ̂
(A
s
+

iµ0Qs

2πa2

)
which is only bounded if

B1 = φ̂
iµ0Qs

2πa2

Next, the electric field is corrected as

E2 =
(µ0Qs2

4πa2
+B

)
ẑ

Once again, in the absence of magnetic field corrections, we expect no electric field corrections and therefore

E2 =
µ0Qs2

4πa2
ẑ

To find the results Jackson demands in the next part, we also need to compute B3, this will be

B3 = φ̂
(C
s
− iµ0Qs3

16πa2c2

)
and after applying the boundary condition

B3 = − iµ0Qs3

16πa2c2
φ̂

b) First, we start by finding an expression for the current amplitude |I| = ωQ(ω). To do this, we write

Q(ω) = −2πε0

∞∑
n=0

ωn

ˆ a

0

sdsEn(s).ẑ

= Q
[
1− 1

8

(ωa
c

)2
+ · · ·

]

Now we may write ˆ
V

wedV ≈ ε0
4
d

ˆ a

0

2πsds
Q2

π2ε20a
4

(
1− s2ω2

2c2

)
=

Q2d

2πε0a4

(a2
2

− ω2a4

8c2

)
=

Q2d

4πε0a2

(
1− ω2a2

4c2

)
≈ |I|2d

4πε0a2ω2
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and ˆ
V

wmdV ≈ d

4µ0

ˆ a

0

2πsds
µ2
0Q

2s2

4π2a4
ω2

(
1− s2ω2

4c2

)
=

µ0dQ
2ω2

32π

(
1− ω2a2

6c2

)
≈ µ0d|I|2

32π

(
1 +

ω2a2

4c2

)(
1− ω2a2

6c2

)
≈ µ0d|I|2

32π

(
1 +

ω2a2

12c2

)

c) The reactance is

X =
4ω

|I|2
(Wm −We)

≈ µ0ωd

8π

(
1 +

ω2a2

12c2

)
− d

πε0a2ω
≈ ωL− 1

ωC

where

L ≡ µ0d

8π
; C ≡ ε0πa

2

d

The resonance frequency is

ωres. ≡
1√
LC

≈
√
8
c

a
≈ 2.83

c

a
> β01

c

a
≈ 2.40

c

a

5 Jackson; 7.7

a) The beam lasts for many periods and therefore we may consider the time dependence to be monochromatic,
that is e−iωt. Also, the same, relatively flat dependence on y, allows us to neglect the y dependence altogether. (A
monotone dependence with zero frequency assumed.) Therefore, the incident beam may be written as

Ei = ϵe−iωt

ˆ
dθ A(θ) exp

[
ik
(
z cos θ + x sin θ

)]

b) The reflected wave, has a phase shift and a reversed z-component of the wave vector.

Er = ϵe−iωt

ˆ
dθ A(θ)eiϕ(θ) exp

[
ik
(
x sin θ − z cos θ

)]

Now let us assume that A(θ) is narrowly concentrated around a specific angle

θ0 > arcsin
1

nr

then using the taylor expansion of the sin and cos functions we have

Ei = ϵei(k.x−ωt)

ˆ
dθ A(θ)

{
1 + i(θ − θ0)k⊥.x− (θ − θ0)

2

2

[
ik.x+ (k⊥.x)

2
]
+ · · ·

}
where

k ≡ k(cos θẑ+ sin θx̂) ; k⊥ ≡ k(− sin θẑ+ cos θx̂)
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Similarly, the reflected wave is

Er = ϵei(k
r.x−ωt+ϕ(θ0))

ˆ
dθA(θ)

{
1 + i(θ − θ0)

[
kr
⊥.x+ ϕ′(θ0)

]
− (θ − θ0)

2

2

[
ikr.x+ (kr

⊥.x)
2 − 2ϕ′(θ0)k

r
⊥.x− iϕ′′(θ0) + ϕ′2(θ0)

]
+ · · ·

}
with

kr ≡ k(− cos θẑ+ sin θx̂) ; kr
⊥ ≡ k(sin θẑ+ cos θx̂)

Up to the linear term, this may be written as

Er(x, t) = E(geo)
r (x+D, t)

where E
(geo)
r is the geometrically reflected wave in the absence of the extra phase ϕ(θ); that is

E(geo)
r ≡ ϵe−iωt

ˆ
dθ A(θ) exp

[
ik
(
x sin θ − z cos θ

)]
The spatial displacement satisfies {

kr.D = ϕ(θ0)

kr
⊥.D = ϕ′(θ0)

Therefore, the lateral displacement is given by

D =
ϕ′(θ0)

k

The direction of this lateral displacement is consistent with the following image if we find D to be negative. (Indeed
we will!)

c) From Jackson’s eq. 7.39, we have

eiϕ⊥ =
n cos θ − i

√
n2 sin2 θ − 1

n cos θ + i
√
n2 sin2 θ − 1

=⇒ ϕ⊥ = −2 arctan

√
n2 sin2 θ − 1

n cos θ

This then gives

D⊥ = −λ

π

sin θ√
sin2 θ − 1/n2

Similarly, using eq. 7.41, we get

eiϕ|| =
cos θ − in

√
n2 sin2 θ − 1

cos θ + in
√
n2 sin2 θ − 1

=⇒ ϕ|| = −2 arctan
n
√
n2 sin2 θ − 1

cos θ

which leads to

D|| =
D⊥

n2 sin2 θ − cos2 θ
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