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Candidacy Exam

Department of Physics

August 20, 2005

Part I

Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants:

Avogadro’s number NA 6.022 × 1023 mol−1

Boltzmann’s constant kB 1.381 × 10−23 J K−1

Electron charge magnitude e 1.602 × 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626 × 10−34 J s
h̄ = h/2π 1.055 × 10−34 J s

Speed of light in vacuum c 2.998 × 108 m s−1

Permittivity constant ε0 8.854 × 10−12 F m−1

Permeability constant µ0 1.257 × 10−6 N A−2

Gravitational constant G 6.674 × 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01 × 105 N m−2

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

Electron rest mass me 9.109 × 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673 × 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K



I–1. A reel consists of a cylindrical hub of radius a and two circular end pieces of
radius b. The mass of the complete reel is m and its moment of inertia about
its long axis is I. The reel rests on horizontal table. The end of a light string
is attached to the hub and wrapped around it, and a tension T in a horizontal
direction is applied to the free end of the string, as shown in the figure. The
coefficient of friction is large enough that the reel rolls on the table.

Determine:

(a) the frictional force exerted by the table,

(b) the direction in which the reel begins to move.

PSfrag replacements
a

b

T

I–2. Two argon atoms are located along the x-axis at x = ±a. Each has an isotropic
polarizability α, such that the atom develops a dipole moment p = αEl when
subject to a local electric field El. Obtain the total dipole moment of the
two-atom system under each of the following conditions:

(a) When a constant electric field of size E0 is imposed along the x-axis.
(E = x̂E0)

(b) When a constant electric field of size E0 is imposed along the y-axis.
(E = ŷE0)

I–3. According to simple kinetic theory, the thermal conductivity of a gas is given
by the expression

K =
1

3
CV λ 〈v〉 , (I–1)

where CV is the heat capacity of the gas at constant volume, per unit vol-
ume, λ is the mean distance between collisions, and 〈v〉 is the mean speed
of the molecules. Approximate all molecules as spherical, and until part (d)
ignore their internal vibrations, and treat the remaining degrees of freedom as
classical.
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(a) Find λ in terms of the number density of the gas and the radius of the
molecules.

(b) How do the quantities on the right-hand-side of Eq. (I–1) depend on tem-
perature T? Deduce the temperature dependence of K.

(c) Regard methane gas as a collection of spherical molecules 1.7 times the
radius of argon atoms. The atomic weight of argon is 40, and the molecular
weight of methane is 16. Estimate the ratio of the thermal conductivity of
methane to argon gas, given that the gases have the same number density.
[Hint: The molar heat capacity at constant volume, cV , is Rf/2 for a gas
with f degrees of freedom.]

(d) Would we expect this ratio to increase or decrease if the methane molecules
were vibrationally excited by collisions.
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I–4. Explain the significance of the photoelectric effect for the discovery of quantum
mechanics.

In a photoelectric experiment monochromatic light of wavelength λ falls on a
potassium surface. It is found that the stopping potential is 1.91 V for λ =
3000 Å, and 0.88 V for λ = 4000 Å. From these data calculate

(a) A value for Planck’s constant given the values for the size of the charge
of the electron e and for the speed of light c that are given in the table at
the front of this exam.

(b) The work function W for potassium.

(c) The threshold frequency νt for potassium.
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Candidacy Exam

Department of Physics

August 20, 2005

Part II

Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants:

Avogadro’s number NA 6.022 × 1023 mol−1

Boltzmann’s constant kB 1.381 × 10−23 J K−1

Electron charge magnitude e 1.602 × 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626 × 10−34 J s
h̄ = h/2π 1.055 × 10−34 J s

Speed of light in vacuum c 2.998 × 108 m s−1

Permittivity constant ε0 8.854 × 10−12 F m−1

Permeability constant µ0 1.257 × 10−6 N A−2

Gravitational constant G 6.674 × 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01 × 105 N m−2

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

Electron rest mass me 9.109 × 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673 × 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K



II–1. The muon is a particle with mass mµ = 106 MeV/c2 and mean lifetime τµ =
2.20 � s. A beam is made of muons of energy 100 GeV.

(a) By what fraction does the speed of the muons deviate from the speed of
light c?

(b) What is the distance the beam travels before a fraction 1/e of the muons
have decayed?

II–2. An electron is placed at the center of a uniform thin ring of charge q and radius
a. The mass of the electron is m. It is then displaced a small distance x along
the axis of the ring (x � a). Derive a formula for the frequency of small
oscillations.

PSfrag replacements

a

x

II–3. An air bubble of 20 cm3 volume is at the bottom of a lake 40 m deep where the
temperature is 4.0 ◦C. The bubble rises to the surface, which is at a temperature
of 20 ◦C. Take the temperature of the bubble to be the same as that of the
surrounding water and find its volume just before it reaches the surface.
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II–4. Consider a particle of mass m constrained to move in one dimension, along the
x-axis. The particle experiences a harmonic oscillator potential V (x) = 1

2
kx2.

A natural angular frequency for the oscillator is defined by ω =
√
k/m.

The first 6 normalized wave functions (energy eigenfunctions) are shown in
Fig. II–1 on page II–3. Note that the wave functions are expressed as func-
tions of the dimensionless variable y ≡ x

√
mω/h̄ and are normalized so that∫ ∞

−∞ ψ∗
n(y)ψn(y) dy = 1.

(a) Write down the energies associated with each of the first 6 wave functions.

(b) Now assume that the potential V (x) is modified to be infinite for x < 0,

V1(x) =

{
1
2
kx2 for x ≥ 0,

∞ for x < 0.
(II–1)

Determine the three lowest energy eigenvalues for the system when the
potential is V1(x).

(c) Assume the system initially has potential V1(x) and is in the ground state
for that potential. The potential then suddenly changes to V (x). Calcu-
late the probability that the system is in the new ground state after the
sudden change in potential. Note: Take careful note of the details of the
normalization condition that is applied to the wave functions.

II–2
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Figure II–1: Plots of wave functions for Problem II–4.
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I.1

a, b) Assuming an unknown friction force, f leftwards and an unknown angular acceleration α rightwards, the
equations of motion are {

mbα = T − f

Iα = fb− Ta

which solve as

f =
I +mab

I +mb2
T ; α =

b− a

I +mb2
T > 0

I.2

a) Initially, the dipoles will be in the x direction. Since the secondary fields wil also be in the x direction, we are safe
to assume that the dipole moments for both atoms are in the form p = αElx̂. Then, using the potential formula

ϕ =
p.r

4πε0 r 3

we can write El in terms of itself as

El = E0 +
αEl

16πε0a3

which gives

El =
E0

1− α
16πε0a3

Finally, the total dipole moment is found as

ptot. = 2αEl =
2α

1− α
16πε0a3

E0

Equivalently

αx
(eq.) =

2α

1− α
16πε0a3

b) A similar procedure leads to the answer

αy
(eq.) =

2α

1 + α
32πε0a3

I.3

a) After a time t, the probability that an atom moving with speed v, does not collide with another atom of velocity
u (with some tolerance box du), is given by

exp
(
− 4πa2 |v − u|t n(u)du

)
1

Therefore, the probability that it survives all possible collisions after some time t, is given by

exp
[
− 4πa2nt EU

(
|v −U|

)]

1I have assumed a ≪ λ in computing the swept volume.
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In other words, the mean free time for this atom is

τ(v) =
1

4πa2n EU

(
|v −U|

) .

This leads to

λ = EV[ |V| × τ(V)] =
1

4πa2n
EX

[ |X|
EY

(
|X−Y|

)
]

where in the last expression, X and Y are independent, standard normal random vectors. Let’s focus on the
denominator

EY

(
|x−Y|

)
= (2π)−3/2

∫
2π sin θdθ y2dy e−y2/2

√
x2 + y2 − 2xy cos θ

=
1√
2π

1

3x

∫ ∞

0

dy ye−y2/2
[
(x+ y)3 − |x− y|3

]

=

√
2

π

[
e−x2/2 +

√
π

2

(
x+

1

x

)
erf

( x√
2

)]

Then the next averaging becomes

χ ≡ EX

[ |X|
EY

(
|X−Y|

)
]
=

∫ ∞

0

x3e−x2/2 dx

e−x2/2 +
√

π
2 erf

(
x√
2

) ≈ 0.6775

In any case

λ =
χ

4πa2n

b) CV and λ are both proportional to the number density n; assuming constant volume, this means they don’t
depend on temperature. ⟨v⟩ is proportional to

√
T and therefore so is K.

c)
KCH4

KAr
=
fCH4

fAr
× a2Ar

a2CH4

×
√
mAr√
mCH4

= 2× (1.7)−2 ×
√
2.5 ≈ 1.1

When counting the degrees of freedom, I have considered the methane molecule as a rigid body.

d) Since fCH4 increases, the ratio will rise too.

I.4

The photoelectric effect was evidence that Planck’s formula really corresponded to the energy of the light quanta/particles
(the photons). This in turn, translated the wavelength spectrum of different elements to energy gaps, later to be
described by quantum theories such as Bohr’s.

a)

V =
hc/e

λ
− V0

⇒ h =
e

c

∆V

∆(1/λ)
≈ 6.605× 10−34 J.s

b)

W = eV0 =
hc

λ
− eV = e

V2λ2 − V1λ1
λ2 − λ1

= 2.21 eV
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c)

νt = c
V1/λ2 − V2/λ1

V2 − V1
≈ 1.213× 1015

II.1

a)

β =

√
1−

(mc2
E

)2 ≈ 1− m2c4

2E2
≈ 1− 5.61× 10−7

b)
N = N0 exp(−τ/τµ) = N0 exp(−t/γτµ) = N0 exp

(
−mc2t/Eτµ

)
= N0 exp(−mcx/βEτµ)

therefore, the mean distance is

d =
βEτµ
mµc

≈ 6.6× 105m

II.2

U = −eϕ =
−eq

4πε0
√
a2 + x2

≈ −eq
4πε0a

(
1− x2

2a2
)

comparison with standard SHO potential, 1
2mω

2x2, we find

ω2 =
eq

4πε0a3m

II.3

V ′ =
T ′

T

P

P ′V ≈ 105.8 cm3

II.4

a)

En = ℏω(n+
1

2
) = ℏω

(1
2
,
3

2
,
5

2
,
7

2
,
9

2
,
11

2
, · · ·

)

b) All of these wave functions (and none other) satisfy the Schroedinger equation and the boundary condition
at infinity; but only the odd ones satisfy the boundary condition at y = 0. Therefore

En = ℏω(2n+
3

2
) = ℏω

(3
2
,
7

2
,
11

2
, · · ·

)
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c) This is given by the squared absolute value of the overlap between the half-cut zeroth and first wave functions.
The cut leads to a new normalization and an extra factor of 2.

P = 2
∣∣∣
∫ ∞

0

ψ0(y)ψ1(y)dy
∣∣∣
2

=
4

π

∣∣∣
∫ ∞

0

e−y2

y dy
∣∣∣
2

=
1

π
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