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Part I 

A rigid pendulum consists of two perpendicular uniform co-planar rods of length 2a 
and 2b, where b > a (see figure below). The two rods have identical density. The 
pendulum is free to oscillate in the plane of the two rods about a pivot at point 0. 

a. Find the equilibrium angle $Jo (see Fig. l(a)). 
b. Suppose the pendulum is released from rest with the longer rod initially pointing 

vertically downward (see Fig. 1 (b)). During the subsequent oscillatory motion, 
find the maximum angle 4, made by the longer rod with the vertical, expressing 
your answer in terms of the equilibrium angle @o. 

Fig. 1 (a) Fig. 1 (b) 



A particle of mass rn is confined to the region 0 < x < b by the one dimensional 
potential defined below. 

In addition, we are given the information that one of the eigenstates Yn (x) has an 
eigenenergy En = +Vo. Your aim is to determine a relationship between the 
physical parameters a, b and Vo that makes this possible. 

a. Solve the steady state Schrodinger equation for the eigenstate yr, (x)  in the 
region 0 < x < a. 

b. Solve the steady state Schrodinger equation for the eigenstate yr, (x) in the 
region a < x < b. 

c. Use continuity conditions to determine an equation that constrains the 
relationship between the physical parameters a, b and Vo. 



A small spherical plastic bead carries a uniformly distributed charge q. The bead is 
placed at a distance R from the center of a grounded spherical conductor of radius a 
< R (see figure below). Your aim is to calculate the force on the bead due to the 
charge induced on the conductor. 

a. It is possible to position a single image charge inside the spherical conductor such 
that it produces an equipotential surface with V = 0, identical to that of the 
grounded spherical conductor. Use strategic points on the equipotential surface to 
generate a pair of simultaneous equations involving the location and value of the 
image charge. 

b. Solve the equations in (b) for the location and value of the image charge, and 
hence determine the force on the bead. 

N atoms of an ideal monatomic gas are enclosed in a bulb of volume VO that itself is 
placed inside an evacuated container of total volume V. This container has thermally 
insulating, rigid walls. 
a. The bulb suddenly breaks, allowing the gas to now occupy the entire container. 

Use a statistical physics argument to determine the change in entropy of the gas. 

b. Reconsider the above process from a thermodynamic viewpoint. Explain how to 
calculate the change in entropy even though the free expansion process is 
irreversible. Carry out this calculation and show that the answer agrees with the 
result you obtained in (a). 
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Part I1 

A uniform stick is initially held horizontally with % of its length sticking out over the 
edge of a table as shown in the upper figure below. It is then released and allowed to 
fall. The coefficient of static friction between the table and the stick is p = 0.7. 

a. Initially, the stick rotates about the point of support without slipping. Determine 
an expression for the force exerted by the table on the stick as a function of the 
angle a between the rod and the horizontal (see lower figure). You may assume 
that this force is always normal to the length of the rod. Your expression will 
include the (unknown) mass of the stick. 

b. Calculate the angle a~ at which the rod begins to slide. 



Two point particles each of identical mass m but with opposite charges +Q and -Q 
are separated by a fixed distance d, forming a rigid electric dipole. The dipole is 
pivoted about the center of mass and constrained to rotate in a plane. The earth's 
gravitational field is not relevant in this problem. 
a. First, consider the system in the absence of any external electric field. Describe 

the system quantum mechanically, writing down the Hamiltonian, its 
d" 

eigenfunctions and eigenvalues. (Recall that the operator L~ = -A2 - 
do2 , where 

is the angular momentum.) 
b. Suppose we now apply a uniform electric field ,!? in the plane of rotation. Write 

down the Harniltonian for the system in terms of the angle of deviation y, between 
the dipole moment jj and the electric field i? . 

c. Consider small oscillations of the electric dipole about the equilibrium position in 
the presence of the electric field. Rewrite the Hamiltonian in (b) for the case of 
small angles and show that it is essentially identical to the Hamiltonian of a 
quantum harmonic oscillator. Use this observation to determine an analytical 
expression for the ground state energy. 

In both the RC circuits below, a capacitor C = 1 p.F and a resistor R = 100 162 are 
connected in series to a battery of EMF E = 9 V. In both cases, switch S is initially 
open and is then closed at t = 0. 

a. Refer to figure (a) above: derive an expression for the time dependence of the 
current in the circuit once the switch is closed. 

b. Now, refer to figure (b) above: a circular loop of wire (radius a = 5 mm, 
resistance r = 5 R ) is positioned close to - but electrically isolated from -- a 
straight wire in the circuit. Determine an expression for the time-dependent 
current in the circular loop once the switch is closed. Assume that the loop is 
small enough to have negligible influence on the RC circuit and that the straight 
wire can be treated as being infinitely long. 



In the questions that follow, ignore Coulomb interactions between electrons. 
a. Condensed matter physicists can now fabricate nanostructures with typical 

dimensions of -10 nm and can study the behavior of small numbers of electrons 
confined within such nanostructures. Suppose you are given a semiconductor 
nanocube of side 10 nm, and you know that electrons confined to this nanocube 
behave as if they have an effective mass m* = 0.1 in,, where me is the free electron 
mass. Compute the total energy and the Fermi energy of 10 electrons confined to 
the nanocube at T = 0 K. You may assume that inside the nanocube the potential 
V = 0 and outside the potential is infinite. 

b. Derive a general expression for the Fermi energy (at T = 0 K) of a three- 
dimensional free electron gas that consists of N electrons (where N is a very large 
number) confined to a macroscopic cube of side L. 



I.1

a)

b2 sinϕ0 = a2 cosϕ0 ⇒ ϕ0 = arctan
a2

b2

b) The potential energies should match

−2µb2 = −2µb2 cosϕm − 2µa2 sinϕm

therefore

tanϕ0 =
a2

b2
=

1− cosϕm
sinϕm

=
sinϕm

1 + cosϕm
= tan

ϕm
2

or
ϕm = 2ϕ0

I.2

a) The Schroedinger equation ψ′′
n + 2mV0ψn = 0 along with the boundary condition ψn(0) = 0 yields

ψn(x) = A sin
(√

2mV0x
)

b) Here, we have ψ′′
n = 0 and therefore

ψn = B(b− x)

c) The continuity conditions are {
B(b− a) = A sin

(√
2mV0a

)
−B =

√
2mV0A cos

(√
2mV0a

)
which can be met only if

sin
(√

2mV0a
)
+

√
2mV0(b− a) cos

(√
2mV0a

)
= 0

I.3

a) Griffiths has proved that the image charge is a distance a2/R from the center of the sphere and in the direction

of the plastic bead. The value of the charge is q′ = −aq/R .

b)

F =
aq2

4πε0R(R− a2/R)2
attractive
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I.4

a) Each atom has now V/V0 many times more options for its position. Therefore the system has (V/V0)
N times

many more options for its spatial configuration. The change in entropy is then calculated as

∆S = log
Ω

Ω0
= N log(V/V0)

b) The energy, and therefore the temperature of the system does not change during the process. Therefore, we
can calculate the entropy change as

∆S =

∫
d̄Q

T
= N

∫
dU − d̄W

pV
= N

∫
dV

V
= N log(V/V0)

II.1

a) Conservation of energy implies
1

2
Iθ̇2 = mg

L

4
sin θ

with

I =

∫ +3L/4

−L/4

x2
m

L
dx =

7mL2

48

This gives the angular velocity as

θ̇2 =
24g

7L
sin θ

Using this and defining m̂ as the unit vector along the rod (right-wards) and n̂ as the unit vector normal to the
rod (upwards), the hinge force is found as

F = m(a− g) = m
( d2
dt2

L

4
m̂+ g cos θn̂− g sin θm̂

)
= mg

(
− 13

7
sin θm̂+

4

7
cos θn̂

)

b) Just before slipping, the tangential to normal ratio of the hinge force equals the coefficient of friction.

0.7 =
13 sinαM

4 cosαM
⇒ αM = arctan

(
2.8

13

)
≈ 12.2 deg

II.2

a) Starting from the Lagrangian

L =
1

4
md2φ̇2

we find the Hamiltonian

H =
P 2

md2
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Here P = −i∂φ is conjugate to the angle coordinate φ. The eigenfunctions are

ψn =
1√
2π
einφ ; n = 0,±1,±2, · · ·

with energies

En =
n2

md2

b)

H =
P 2

md2
−QEd cosφ

c)

H ≈ P 2

2M
+

1

2
Mω2φ2 −QEd

where

M ≡ 1

2
md2 and ω2 ≡ 2QE

md
The ground state energy is then found as

Eg ≈ ω

2
−QEd =

√
QE

2md
−QEd

II.3

a)

KVL : E − q

C
−Rq̇ = 0

implies

q = CE
(
1− e−t/RC

)
and in turn

I = q̇ =
E
R
e−t/RC

with
E
R

= 90µA and RC = 100ms

b) I assume the question is to find the loop current. I start with the flux

Φ =

∫ π

0

µ0I

2πa(1− cos θ)
× 2a2 sin2 θ dθ = µ0Ia

(
1 +

2

π

)
then

i =
Φ̇

r
=

µ0aE
R2Cr

(
1 +

2

π

)
e−t/RC

putting in the numbers one gets

i ≈ 1.85 pA × e−t/RC
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II.4

a) The 10 electrons fully fill the first 5 states. Two electrons end up in the |111⟩ state; six end up in the |211⟩,
|121⟩, and |112⟩ states; finally, two end up somewhere in the subspace spanned by |122⟩, |212⟩, and |221⟩. The total
energy is therefore

U =
π2

2m∗a2
(2× 3 + 6× 6 + 2× 9) ≈ 2.26 eV

The Fermi energy, is

EF =
9

60
U ≈ 338meV

b)

N =
L3

π3
× 1

8
× 4

3
πK3

F × 2

gives the largest occupied momentum as

KF =
(3π2N

L3

)1/3

The Fermi energy is therefore

EF =
K2

F

2m∗ =
(3π2N

L3

)2/3/
2m∗
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