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Candidacy Exam

Department of Physics

January 14, 2006

Part I

Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants:

Avogadro’s number NA 6.022 × 1023 mol−1

Boltzmann’s constant kB 1.381 × 10−23 J K−1

Electron charge magnitude e 1.602 × 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626 × 10−34 J s
h̄ = h/2π 1.055 × 10−34 J s

Speed of light in vacuum c 2.998 × 108 m s−1

Permittivity constant ε0 8.854 × 10−12 F m−1

Permeability constant µ0 1.257 × 10−6 N A−2

Gravitational constant G 6.674 × 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01 × 105 N m−2

Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4

Electron rest mass me 9.109 × 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673 × 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K



I–1. A small mass m with initial velocity v goes by a star with a mass M at initial
impact distance b. What is the distance of closest approach?

I–2. The space between the plates of thin parallel-plate capacitor is filled with a
medium of conductivity σ and unit dielectric constant. The separation between
the plates is d, and the plates are circular. A variable voltage V = V0 sinωt is
applied to the capacitor. Find the magnetic field inside the capacitor. Assume
that the electric field between the plates is uniform, i.e., ignore edge effects. In
your calculation, assume that ω � c/L and ω � c2ε0/(σL

2), where L is maxi-
mum linear dimension of the capacitor. What would affect your calculation if
ω did not satisfy these conditions?

I–3. A paramagnetic solid is composed of spin-1/2 atoms (N per unit volume), each
with a permanent magnetic dipole moment (µ per atom). In the presence of a
magnetic field, of flux density B, the particles can occupy one of only two spin
states, with the magnetic moments parallel or antiparallel to the B field, with
energies ±µB. The Boltzmann distribution tells us the number fN of dipoles
oriented parallel and the number (1− f)N antiparallel. In the whole problem,
ignore dipole-dipole interactions.

(a) Use Boltzmann statistics to determine the fraction of moments that point
parallel to the field at temperature T . What is the net dipole moment per
unit volume (or magnetization) M(T ).

(b) The solid is held at a temperature of 1 K in a magnetic field of 1 T and
is thermally isolated and is in equilibrium. Next the magnetic field is
reduced to 0.3 T. If no dipoles change their orientation (i.e., no further
thermal fluctuations have had an effect), to what temperature does the
final distribution of dipoles correspond?
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I–4. An electron is constrained to move around a circular ring of radius R. Its
quantum mechanical wave function is therefore a function of the polar angle
around the ring: ψ(θ). There is a uniform external classical magnetic field B
perpendicular to the ring.

(a) First at B = 0, find the energy eigenstates and eigenfunctions. What is
the ground state energy?

(b) Repeat with B 6= 0. (You will probably find it useful to obtain a vector
potential for the magnetic field.) Show that the ground state is doubly
degenerate when the magnetic flux through the ring is a half-integer mul-
tiple of φ0. Here φ0 is the elementary unit of magnetic flux, which is hc/e
or h/e depending on the system of units.
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II–1. A homogeneous cube, each edge of which has a length l and whose mass is
M , is initially in a position of unstable equilibrium with one edge in contact
with a horizontal plane. The cube is then given a very small displacement and
allowed to fall. Find the moment of inertia about a line that is through the
center of mass and parallel to one of the edges of the cube. Then find the
angular velocity of the cube when one face strikes the plane in the two cases:
(i) the edge cannot slide on the plane, (ii) the edge can slide without friction.

PSfrag replacements

l

II–2. Consider an object in the shape of a split ring. It is a circular ring with a
square cross section, with a very small slit opened in it, and it is made of an
electrically conducting material of resistivity ρ. The inner and outer radii of
the ring are a and 2a, and the thickness is a. Wires of negligible resistance are
connected to the exposed faces.

Derive an expression, in terms of ρ and a, for the resistance R of the split ring
as measured between the two wires.
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II–3. (a) Define the term “chemical potential”.

(b) What steps would you go through to calculate the chemical potential of
a classical monatomic ideal gas, given its temperature, volume and the
number of atoms? There is no need to perform the calculation. Just
explain clearly the steps needed to do the calculation.

(c) In a container of such a gas is placed a solid on whose surface the atoms
of the gas can be adsorbed. The adsorbed atoms form a two-dimensional
ideal gas, with the energy of one atom being p2/(2m)− ε0, where p is its
(two-component) momentum vector and ε0 is the binding energy which
holds the atom on the surface.

List the steps you would go through to obtain the number n′ of atoms
adsorbed per unit area of the solid’s surface when the pressure of the
surrounding gas is P and the temperature is T , and the system is in
thermodynamic equilibrium.

II–4. The x-component of the spin of a spin 1 particle is measured, with the result
Sx = 0. A second measurement is made, now of Sz. Find the possible values
from the measurement and the corresponding probabilities.

II–2



I-1

Conservation of energy and angular momentum (per unit mass) read

v2

2
= −GM

a
+
u2

2

bv = au

These combine to yield the minimum distance a as

a = −GM
v2

+

√
(
GM

v2
)2 + b2

I-2

From the symmetries and linearity of Maxwell’s equations, we find the field forms as

E = Re
[
E(s)e−iωt

]
ẑ ; B = Re

[
B(s)e−iωt

]
φ̂

Maxwell’s equations then read 
dE
ds = −iωB

dB
ds = µ0(σ − iωε0)E

As we will see, the approximations allow us to use a uniform electric field

E(0)(s) ≈ −iV0
d

when computing the magnetic field. This gives

B(1)(s) ≈ −iV0
d

µ0(σ − iωε0)s

or

B ≈ µ0V0s

d
φ̂
[
σ sin(ωt) − ωε0 cos(ωt)

]
To see how good the uniform field approximation is, we can find the first correction to the electric field as

E(2) = −ωV0µ0

2d
(σ − iωε0)s

2

For the approximation to hold, we need the following to be small

|E(2)|
|E(0)| ≤

ω

2
µ0L

2|(σ − iωε0)| ≤
1

2

(ωL
c

)2
+

1

2
ωµ0L

2σ

which is guaranteed by the assumption.
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I-3

a)

1− f

f
= e−2βµB ⇒ f =

1

1 + e−2βµB

M = nµ(2f − 1)B̂ = nµ tanh(βµB)B̂

b)

nµ tanh(βµB) = nµ tanh(β′µB′) ⇒ T = 0.3K

I-4

a)

L =
1

2
mR2θ̇2 ⇒ H =

P 2

2mR2

The energy eigen states and eigenvalues are given by

ψn =
1√
2π
einθ ; En =

n2

2mR2

for all n ∈ Z. The ground state corresponds to n = 0:

ψ0 =
1√
2π

; E0 = 0

b) This time we need to include the vector potential

A =
1

2
Bsφ̂

in the Lagrangian

L =
1

2
mR2θ̇2 − 1

2
eBR2θ̇

which leads to a Hamiltonian

H =

(
P + 1

2eBR
2
)

2mR2

The eigen states are not changed

ψn =
1√
2π
einθ

but the energies become

En =

(
n+ 1

2eBR
2
)

2mR2

This is degenerate if and only if
eBR2

2
= ℓ ∈ Z

which yields the magnetic flux as
Φ = πR2B = ℓΦ0
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II-1

I =M⟨x2 + y2⟩ = 2Ml2
〈(x
l

)2〉
= 2Ml2

∫ + 1
2

− 1
2

x2 dx =
1

6
Ml2

i)

I ′ =
1

6
Ml2 +

1

4
Ml2 =

5

12
Ml2

is the moment of inertial around the constant pivot. Conservation of energy reads

Mgl(
1√
2
− 1

2
) =

5

24
Ml2ω2

i

which leads to

ωi =

√
12(2−

√
2)g

5
√
2l

ii) This time, the conservation of energy reads

Mgl(
1√
2
− 1

2
) =

1

12
Ml2ω2

ii +
1

2
MV 2

where

V =
lωii√
2

is the velocity of the center of mass of the block. The angular velocity is finally found to be

ωii =

√
3(2−

√
2)g

2
√
2l

II-2

In the steady state, the potential ϕ satisfies the Laplace equation and the mixed Dirichlet and Neumann boundary
conditions. (Fixed potential where the wires are touching and vanishing normal derivative elsewhere) Therefore,
we can guess the solution by virtue of uniqueness:

ϕ =
V φ

2π

This leads to

J = −σ∇ϕ = − σV

2πs
φ̂

Therefore the current from high potential to low potential is

I =
V

R
=
σV

2π

∫
dA

s
=
σaV

2π
log(2)

which is equivalent to

R =
2π

σa log(2)
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II-3

a) One can use the infinitesimal form of the first law

dE = −pdV + TdS + µdN

to define the chemical potential as

µ =
( ∂E
∂N

)
V,S

This is also equivalent to

µ =
( ∂G
∂N

)
p,T

b) First, I should compute the partition function

Z(T, V,N) ≡
∫

e−βH

(2π)3N
d3Np d3Nx

then, use
Z = e−βF

to find the Free energy F = E − TS in terms of (T, V,N). Finally, I should use

µ =
( ∂F
∂N

)
V,T

to find µ(T, V,N).

c) For such an open system, a condition for the equilibrium is the equality of chemical potentials. So we need
to repeat the procedure for the 2D gas to find µ(T,A,N). Use the equation of state

p = nkT

where n is the number density in any dimension to express µ in terms of p, T for the 3D gas and then finally write

µ3D(P, T ) = µ2D(T,A, n′A)

to find n′.

II-4

Using
J± |j,m⟩ =

√
j(j + 1)−m(m± 1) |j,m± 1⟩

we find the J+ operator as

J+ =

√
2 √

2


then

Jx =
J+ + J−

2
=
J+ + J†

+

2
=

1√
2

 1
1 1

1


Now after the measurement, we have Jx |ψ⟩ = 0. Apart from a total phase, this means

|ψ⟩ = 1√
2

 1
0
−1


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Now it is fairly easy to see that the Jz measurement will result in

Jz =


+1 w.p. 1

2

−1 w.p. 1
2
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