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Candidacy Exam (corrected)

Department of Physics

October 3, 2009

Part I

Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 JK−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 Jmol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 ms−1

Permittivity constant ε0 8.854× 10−12 Fm−1

Permeability constant µ0 1.257× 10−6 NA−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 Nm−2

Stefan-Boltzmann constant σ 5.67× 10−8 Wm−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3MeV c−2

Origin of temperature scales 0 ◦C = 273K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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I–1. A uniform spherical solid ball rolls with a center-of-mass velocity v. The ball
is of mass m and radius a.

(a) What is its total kinetic energy?

(b) The ball rolls on parabolic track of the form y(x) = βx2, where β is a
positive constant, x is horizontal position, and y is vertical position. As
the ball rolls back and forth, the maximum height of its center of mass is
h0. What is its maximum velocity?

I–2. A quantum mechanical particle of mass m is situated on a line with the fol-
lowing potential:

V (x) =

{
0 : 0 < x < a,

+∞ : x < 0, x > a.
(I–1)

Its initial wave function is ψ(x, t = 0) = A sin3(πx/a). Find the wave function
at arbitrary time t > 0. Does the particle return to the initial state at some
time T?

I–3. Consider a rectangular wave guide along the z-axis, assuming the electric and
magnetic fields to be of the form

~H = Re

[
~h(x, y)ei(ωt−kzz)

]
, ~E = Re

[
~e(x, y)ei(ωt−kzz)

]
. (I–2)

(a) Use the x- and y-components of Faraday’s and Ampère’s laws to determine
the transversal field components in terms of ez and hz.

(b) Use Maxwell’s equations to derive the Helmholtz equation

∂2f

∂x2
+
∂2f

∂y2
+ p2f = 0 (I–3)

for ez and hz, and identify p.

(c) Solve the Helmholtz equations for TMmodes, whereHz = 0, by separation
of variables. Which frequencies ω are possible for given side lengths a and
b of the wave guide’s cross-section.
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I–4. An atom has a magnetic moment ~µ. In a particular crystal it can only be
oriented in any of the six directions ±x, or ±y, or ±z, and in the absence of a
magnetic field, each of these 6 states has the same energy.

Now assume that a fixed magnetic field points in the ẑ-direction.

(a) What is the partition function at nonzero temperatures for the magnetic
system?

(b) Derive a formula for the average magnetic moment 〈~µ〉 as a function of
temperature and magnetic field.
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Department of Physics

October 3, 2009

Part II

Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 JK−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 Jmol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 ms−1

Permittivity constant ε0 8.854× 10−12 Fm−1

Permeability constant µ0 1.257× 10−6 NA−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 Nm−2

Stefan-Boltzmann constant σ 5.67× 10−8 Wm−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3MeV c−2

Origin of temperature scales 0 ◦C = 273K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm

II–1



II–1. A newtonian particle of mass m falls under the influence of the earth’s gravity
(treated as uniform). It experiences a viscous drag force kv, where k is a
constant and v is the particle’s speed. The particle released from rest at a
height h0 at time t = 0. Obtain its height h(t) as a function of time t?

II–2. Two identical quantum-mechanical particles of mass m are confined to a line
where there is a potential V (x). All the single-particle energy eigenstates are
bound states and are non-degenerate. Let the single-particle energy eigenvalues
be E1, E2, etc, in order of increasing energy. You should neglect all inter-
particle interactions.

(a) For the two-particle system, what are the two lowest eigenenergies when
the particles are spinless bosons? Express your answer in terms of the
single-particle energies.

(b) What if they are spinless fermions?

(c) What if they are spin-1/2 fermions?

II–3. Two rings of radii R are placed in parallel planes at distance L from each other
such that the line connecting their centers is orthogonal on the planes (see
figure). Each ring has a uniform positive charge density and total charge Q. A
small bead of positive charge q and mass m is constrained to move on the line
connecting the centers of the two rings. Find:

(a) The equilibrium position of the bead.

(b) The period of small oscillations about that position.

L

R R
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II–4. An enclosure contains a classical ideal gas at pressure p and has in one of its
walls a small hole of area A through which molecules pass into vacuum. In
this vacuum, directly in front of the hole at a distance L from it, there is a
suspended circular disk of radius R. It is oriented such that the normal to its
surface points towards the hole. Assuming that the molecules escaping from
the enclosure are scattered elastically from the disk, find the force exerted on
the disk by the escaping molecules, in the limit that the size of the hole is much
less than L and R. Base your answer on the Maxwell-Boltzmann distribution.
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I-1

a) The angular velocity is

ω =
v

a

threfore the energy is

T =
1

2
mv2 +

1

2
Iω2 =

1

2
mv2 +

1

2

2

5
ma2

v2

a2
=

7

10
mv2

b) Let ξ denote the x−coordinate value of the touching point between the sphere and the curve. Then the
position of the center of mass is given by

x = ξ − a sin[θ(ξ)] ; y = f(ξ) + a cos[θ(ξ)]

where θ ≡ arctan[f ′(ξ)] is the angle the curve makes with the horizontal. A geometric argument, proves the rolling
angular velocity as

aω =
ds

dt
− a

dθ

dt
= ξ̇

[
sec θ − a

dθ

dξ

]

The kinetic energy comprises of two parts: a translational and a rotational one. The translational one is

Tt =
1

2
mξ̇2

[
1 + a2θ′2 cos2 θ − 2aθ′ cos θ + tan2 θ + a2θ′2 sin2 θ − 2aθ′ tan θ sin θ

]

=
1

2
mξ̇2

( 1

cos θ
− aθ′

)2

The rotational one is

Tr =
1

5
ma2ω2

=
1

5
mξ̇2

( 1

cos θ
− aθ′

)2

The fact that Tr is proportional to Tt leads to

vCM =

√
10T

7m

Attaining its maximum when all the potential energy is converted to kinetic energy

v∗CM =

√
10

7
g(h0 − a)

I-2

ψ = A sin3
(πx
a

)
= A sin

(πx
a

)1− cos(2πx/a)

2

=
A

2

[
sin

(πx
a

)
− 1

2
sin

(3πx
a

)
+

1

2
sin

(πx
a

)]

=
A

4

[
3 sin

(πx
a

)
− sin

(3πx
a

)]

=
3√
10
ψ1(x)−

1√
10
ψ3(x)

Evolving throught time, this becomes

ψ(x, t) =
exp

(
−iπ2t/2ma2

)
√
5a

[
3 sin

(πx
a

)
− exp

(
−4iπ2t/ma2

)
sin

(3πx
a

)]
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After some time

T1 =
ma2

2π

the state will be equivalent to its initial state; but it takes

T2 =
4ma2

π

for the state to fully recover back to its initial state.

I-3

a) These components of Maxwell’s equations read

∂ez
∂y

− ikzey = iωµhx ikzex − ∂ez
∂x

= iωµhy

∂hz
∂y

− ikzhy = −iωεex ikzhx − ∂hz
∂x

= −iωεez

and are solved as

e2 =
i

ω2εµ− k2z

(
kz∇2ez + ωµẑ×∇2hz

)

h2 =
i

ω2εµ− k2z

(
kz∇2hz − ωεẑ×∇2ez

)

b)
∇2.h2 + ikzhz = 0

is equivalent to [
∇2

2 + (ω2εµ− k2z)
]
hz = 0

the same equation is similarly found to govern ez.

c) For the hz = 0 modes, all the boundary conditions are summarized in ez = 0 at the boundaries. Then the
Helmholtz equation is solved as

e(mn)
z = A sin

(mπx
a

)
sin

(nπy
b

)

with

ω2
mn =

k2z
εµ

+
π2

εµ

(m2

a2
+
n2

b2

)
>

π2

εµ
(1/a2 + 1/b2)

I-4

a) Let x ≡ βBµ

Z = ex + e−x + 4

b)

⟨µ⟩ = µẑ
e+x − e−x

e+x + e−x + 4
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= µẑ
sinh(x)

2 + cosh(x)

II-1

Let us start by finding the velocity
dv

dt
= g − k

m
v

Adding the initial condition v(0) = 0, this equation is solved as

v(t) =
mg

k

(
1− e−kt/m

)

The dropping distance is the integral of this velocity over time

x(t) =
mg

k

[
t− m

k

(
1− e−kt/m

)]

Leading to the height function

h(t) = h0 −
mg

k

[
t− m

k

(
1− e−kt/m

)]

II-2

a) E1 + E1 , E1 + E2

b) E1 + E2 , E1 + E3

c) E1 + E1 , E1 + E2

II-3

a) Let ξ be the displacement of the charge from the center. Also define

a ≡ L

2R
; x ≡ ξ

R

then the potential energy is

U =
qQ

4πε0R

{[
1 + (a− x)2

]−1/2
+

[
1 + (a+ x)2

]−1/2
}

The equilibrium condition is dU/dx = 0 equivalent to

B+

(1 +B+)3
=

B−

(1 +B−)3

where
B± ≡ (a± x)2

In the process of getting to the equation above, two irrelevent answers with |x| > a have been added. The equation
may be further simplified into

(B+ −B−)
[
1− 3B+B− −B+B−(B+ +B−)

]
= 0
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the obvious solution is
B+ −B− = 0 ⇐⇒ x = 0

or the center. The two other solutions (if existing) are found by solving the (essentially third order) equation

1 = (a2 − x2)2
[
3 + 2(a2 + x2)

]

It turns out that at a2 = 1/2, the stable equilibrium in the center turns into an unstable equilibrium in the center
surrounded by two symmetrically posed stable equilibriums.

b) To find the oscillations frequency, (only in the center), we expand the potential to second order to find the
quadratic term to be

Uquad. =
1

2
m

qQ(L2 − 2R2)

8πε0m(R2 + L2/4)5/2
ξ2

leading to

ω2 =
qQ(L2 − 2R2)

8πε0m(R2 + L2/4)5/2

II-4

The force is the sum of bits

dF = 2mvz
δN

δt

where δN is the number of particles that exit the hole in the time interval δt, are aimed at the disk and have
z−velocitis between vz and vz + dvz. Let f denote the probability density function for vz and g for the absolute
value of the x− y plane velocity. Then

δN =

∫ vzδt

0

dz

∫ Rz/L

0

2πsds nf(vz)dvz g(svz/z)
Avz
z

1

2πs

= Anδtf(vz)vzdvzP[
√
v2x + v2y ≤ Rvz

L
]

To find the net force, we need to integrate this over vz. Defining

σ2 ≡ kBT

m

we have

F = 2mnA

∫ ∞

0

v2zf(vz)dvzP[
√
v2x + v2y ≤ Rvz

L
]

= 2mnA

∫ ∞

0

v2zf(vz)dvz

(
1− e−R2v2

z/2σ
2L2

)

= mnAσ2
[
1−

( L2

L2 +R2

)3/2]

= pA
[
1−

( L2

L2 +R2

)3/2]
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