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Candidacy Exam

Department of Physics

October 2, 2010

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:
∫ ∞
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2
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0
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Laplacian in cylindrical coordinates (r, θ, z):
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1

r

∂
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(
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I–1. (a) A rope of length l is hanging over the edge of a table such that the verti-
cally hanging piece has length x0 < l. When released, the rope starts to
slide down. Determine the distance x(t) of the bottom end of the hang-
ing piece to the table top as a function of time, ignoring friction and the
resistance of the rope to bending.

(b) Consider the situation in part (i), but now taking into account a friction
force which is proportional to the weight of the horizontal piece of the
rope lying on the table, with proportionality constant µ. Determine x(t)
for initial values x(0) = x0 with 0 < x0 < l and ẋ(0) = v0 > 0 at all times
with positive ẋ.

I–2. An infinitely long solenoid cylinder extends from z = −∞ to z = +∞ and is
concentric around the z axis. The cylinder radius is r, and it is wrapped with
turns of wire that carry current I. The part of the solenoid in the region z < 0
has n turns of wire per unit length, while for z > 0 there are 2n turns per unit
length. The magnetic field direction along the z axis is everywhere in the +z
direction.

An electron of mass m, charge e, and spin s = h̄
2
ẑ, is initially moving in the +z

direction inside the cylinder. For z � 0 the electron moves along the z axis with
velocity Vi = viẑ. Traveling into region z � 0, the electron velocity changes
to Vf = vf ẑ. (Approximate the electron magnetic moment with µ = − e

m
s.)

(a) Determine an expression for the magnetic field in the interior of each
solenoid.

(b) What is the force on an electron located along the axis inside the solenoid,
for z � 0, where the field is uniform?
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(c) Assuming no spin rotation and non-relativistic kinematics, determine the
final speed vf for z � 0 in terms of vi, r, n, I, m, and e.

I–3. In an example related to black body radiation, assume that the number of
photon modes per unit angular frequency ω in an empty cubic box of side L is

dN

dω
=
ω2L3

π2c3
. (I–5)

If each of these modes is treated as a photon mode that can be populated with
and integer number of photons, the energies for a mode will be restricted to
E = nh̄ω, where n is a non-negative integer {0, 1, 2, 3, . . .}.

(a) Calculate the partition function for the set of modes at one particular
angular frequency ω. (Be sure to sum the series.)

(b) Use the partition function to determine the average energy for the modes
at angular frequency ω at temperature T .

(c) Determine an expression for the total electromagnetic energy in the box.
(Set up the integral over frequency but don’t integrate it).

(d) Without actually integrating over frequency, it is clear that the energy
density will be proportional to Tα. Find α.

I–4. A quantum mechanical particle of mass m is constrained to move between two
concentric impermeable spheres of radii r = a and r = b. There is no other
potential. Find the ground state energy and the corresponding normalized
wave function.
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Candidacy Exam

Department of Physics

October 2, 2010

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:
∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Laplacian in spherical polar coordinates (r, θ, φ):

∇2f =
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+
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(
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)
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. (II–3)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
+
∂2f
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. (II–4)

II–1. Consider two different relativistic proton-proton scattering experiments. In
the first experiment a beam of protons is accelerated to energy 2E and allowed
to collide with a target (e.g., liquid hydrogen) at rest in the laboratory. In
the second, two beams of protons are each accelerated to energy E and then
collided head-on in the laboratory.

(a) Evaluate the collisional energy in the center-of-mass frame for each exper-
iment. Which experiment allows for more energetic collisions?

(b) What is the relationship between the energy of the beam in the first ex-
periment, and the energy of each of the beams in the second experiment,
that is required for the two experiments to probe the same energy scale?
The LHC will allow for 14 TeV center-of-mass energy proton-proton col-
lisions: What energy would the beam in a stationary target experiment
need to be to probe the same energy scale?

II–2. Consider a grounded conducting sphere of radius a the center of which coincides
with the origin of the coordinate system. Place a point charge q at position y
outside it.

(a) Find the value q′ and the position y′ of the image charge inside the sphere.

(b) Evaluate the potential φ at any point x outside the sphere.

(c) Evaluate the surface charge density σ induced on the surface of the sphere.

II–3. Consider a collection of identical flat disks, confined to the xy-plane, each
rotating freely about an axis through its center, i.e., around the z axis. Let
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the disks have moment of inertia I. Suppose we now treat this as a two-
dimensional gas, the disks colliding with each other and transferring rotational
kinetic energy such that the angular velocities ω vary over a range −∞ to +∞.

Determine that the average angular momentum at some equilibrium tempera-
ture T has the form

〈I|ω|〉 =

√
2IkBT

π
. (II–5)

II–4. A system has five orbital states into which one can put three identical particles.
How many different arrangements are there for:

(a) spin-zero bosons?

(b) spin one-half fermions?

(c) classical particles?
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I-1

a) The potential energy as a function of the hanging length x is given by

U(x) = −mx

l
g
x

2
= −1

2

mg

l
x2

this leads to an antiharmonic motion

x(t) = x0 cosh
(√

g/l t
)

b) This time, the Newton’s equation of motion has an extra term

ẍ =
g

l
x− µ

g

l
(l − x)

solved (with the given initial conditions) as

x(t) =
µl

1 + µ
+

(
x0 −

µl

1 + µ

)
cosh

[√g(1 + µ)

l
t
]

I-2

a) Regrading this solenoid as the superposition of an infinite solenoid with n windings per unit length and a
half-infinite solenoid with n windings per length, we find the magnetic filed (on the z−axis) as

B = ẑµ0nI
[3
2
+

z

2
√
z2 + r2

]

b) Both the qv×B and ∇(µ.B) forces are zero on the z−axis and in the z ≪ 0 region where the field is uniform..

c) The easiest way would be to use the conservation of energy

1

2
mv2i − µµ0nI =

1

2
mv2f − 2µµ0nI

Leading to

vf =

√
v2i −

eℏµ0nI

m2

I-3

a)

Z =

∞∑

n=0

e−nβℏω =
1

1− e−βℏω

b)

E(ω) = − ∂

∂β
log(Z) =

ℏω
eβℏω − 1
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c)

U =

∫ ∞

0

E(ω)
dN

dω
dω =

∫ ∞

0

ℏω
eβℏω − 1

ω2L3

π2c3
dω

d)

U =
ℏL3

π2c3
(βℏ)−4

∫ ∞

0

x3dx

ex − 1
∝ T 4 ⇒ α = 4

I-4

In the ground state, there is no orbit angular momentum. The (non-normalized) wavefunction is

ψ =
1

r
sin

[π(r − a)

b− a

]

with energy

Eg =
π2

2m(b− a)2

II-1

a) I use the letter T to denote the kinetic energy. Also, note that if you want these experiments to be classically
equivalent, then you need to accelerate the incident particles in the first experiment up to 4T and not 2T . In any
case, in the second experiment

T
(2)
CM = T

since the LAB frame is already the CM frame. For the first experiment, if we define

γ ≡ 1 +
2T

m
; β ≡

√
1− 1

γ2

then, the CM velocity, β0 is found by solving the equation

β − β0
1− ββ0

= β0

as

β0 =
1

β
−
√

1

β2
− 1

leading to the CM energy

T
(1)
CM =

m√
1− β2

0

−m = m
(√

1 + T/m− 1
)

To compare the two, note that

T
(2)
CM

T
(1)
CM

= 1 +
√
1 + T/m > 1

and therefore the second experiment is more energetic.
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b) If T and β denote the kinetic energy and the velocity (of each particle) in the second experiment, then, in
order for the experiments to be equivalent, we need an incident velocity

β′ =
2β

1 + β2
⇒ γ′ =

1 + β2

1− β2

Therefore
T ′ = m(γ′ − 1) = 4T (1 + T/2m)

For the LHC, using mp ≈ 938.3MeV/c2,this is

T ′ = 4× 14TeV ×
√
1 + 14000000/938.3 ≈ 6.8PeV

II-2

a)

q′ = −a
y
q ; y′ =

a2

y2
y

b)

ϕ =
q

4πε0

[ 1

|x− y| −
ay

|y2x− a2y|
]

c)

σ = ε0Er =
q

4π

{ a− y cos θ

(a2 + y2 − 2ay cos θ)3/2
− a2

y2
y − a cos θ

[
a2 + a4/y2 − 2(a3/y) cos θ

]3/2
}

II-3

HRot. =
L2

2I

The distribution of the angular momentum is thereore

f(L) = Ae−βL2/2I

which is a ceneterred normal distribution with
σ2 = I/β

therefore

⟨|L|⟩ = σ

∫ +∞

−∞

dx√
2π
e−x2/2 |x| = σ

√
2

π
=

√
2IkBT

π
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II-4

a) They can all fit in a single orbital (5), or fit in a 2+1 combination (5× 4), or spread in 3 different orbitals (5C3).

These add up to 35 bosonic states.

b) It is almost the same as bosons except that all three of them can not fit in a single orbital. This means there

are 30 states for such fermions.

c) Each particle has 5 different options, therefore

Ω = 53 = 125

states.
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