
PSU Physics PhD Qualifying Exam Solutions

Spring 2010

Koorosh Sadri

July 10, 2022

1



Candidacy Exam

Department of Physics

February 6, 2010

Part I

Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 JK−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 Jmol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 ms−1

Permittivity constant ε0 8.854× 10−12 Fm−1

Permeability constant µ0 1.257× 10−6 NA−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 Nm−2

Stefan-Boltzmann constant σ 5.67× 10−8 Wm−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3MeV c−2

Origin of temperature scales 0 ◦C = 273K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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I–1. A ball of radius R is uniformly charged with a total electric charge Q.

(a) Compute the electrostatic potential as a function of the radial distance
from the center.

(b) Now a narrow hole is drilled in a straight line all the way across the ball
going through its center. What motion is followed by an object of mass m
and charge q, with qQ < 0, released at rest from one end of the hole? Will
the object return to its point of release; and if so, when? Neglect friction,
and assume the radius of the hole is small enough not to affect the electric
potential.

I–2. A particle of mass m moving in one dimension is confined by a rigid wall on
one side, and a harmonic force on the other. It is thus subject to a potential
V (x) with V (x) = ∞ for x < 0, V (x) = 1

2
kx2 for x > 0.

Using properties of states and energy eigenvalues of the harmonic oscillator,
find the quantum mechanical energy spectrum for the system given here.

I–3. In a quasi-static process A→ B in which no heat is exchanged with the environ-
ment the mean pressure p̄ of a certain gas changes with the volume according
to the relation

p̄ = αV −5/3 (I–1)

where α is a constant.

Consider the same system being taken by the following two different processes
from the same initial macrostate A to the same final macrostate B. In each
case, find the quasi-static work done and the heat absorbed by the system:

(a) Heat is added such that the system expands from its initial volume to its
final volume at constant pressure; then heat is extracted such that the
pressure decreases to its final value while the volume is kept fixed

(b) The volume is increased and simultaneously heat is supplied to cause the
pressure to decrease linearly with the volume.

p̄

V

A

B

a

a
b

p̄ = αV −5/3
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I–4. Resistive magnetic monopole detector: Maxwell’s equations can be generalized
to include the possibility of magnetic monopoles by adding terms for magnetic
charge QM and magnetic current IM . Define the magnetic flux through a
surface S by ΦM(S) =

∫
~B · d~S. Then in their integral form, the two modified

Maxwell’s equations are as follows: Gauss’s law for ~B becomes

ΦM(closed surface S) = µ0QM(inside S). (I–2)

The induction formula becomes
∮

W

~E · d~l = −dΦM(S)

dt
− µ0IM(S), (I–3)

where S is a surface with boundary
W , and IM(S) is the magnetic current
crossing S.
Consider the result if a particle with
a magnetic charge QM passes through
a circular wire loop of radius L and
resistance R. The monopole trav-
els with constant non-relativistic speed
v = dz/dt along the loop axis.

L

Z

φ

Q m

(a) Compute the flux of magnetic field through the wire loop as a function of
time.

(b) Deduce the emf induced in the loop.

Note: you may find that the answer in part (a) has a sudden jump in it
at the time that the particle passes through the plane of the loop. There
will also be a delta function in the magnetic current at the same time,
which will cancel the effects of the jump in the flux.

(c) How much heat would be dissipated in the loop as the magnetically
charged particle pass through it? Assume that the energy lost to re-
sistance is small compared to the initial kinetic energy of the particle.
Ignore the inductance of the loop.
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Candidacy Exam

Department of Physics

February 6, 2010

Part II

Instructions:

� The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

� Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

� We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 JK−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 Jmol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 ms−1

Permittivity constant ε0 8.854× 10−12 Fm−1

Permeability constant µ0 1.257× 10−6 NA−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 Nm−2

Stefan-Boltzmann constant σ 5.67× 10−8 Wm−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3MeV c−2

Origin of temperature scales 0 ◦C = 273K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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II–1. A block of mass m1 move across a horizontal, frictionless table with transla-
tional velocity v0, and strikes head-on a massless spring (of spring constant
k) connected to a similar block of mass m2. (See the diagram.) A maximum
compression of the spring occurs at the instant the velocities of both blocks are
equal. The system of the second block (mass m2) and the spring are initially
at rest.

m1 m2

v0

no friction

If m1 = m2 = 0.1 kg and k = 6.5×104 N/m, what is the maximum compression
amplitude A of the spring when the initial translational velocity of block m1 is
v0 = 10m/s?

II–2. A metal sphere of radius a is placed in a uniform infinite medium of resistivity ρ
and relative permittivity εr. At time t = 0 a charge Q is present on the sphere.
Find the potential V (t) of the sphere at later times. What is the “half-life” of
charge on the sphere?

Assume that the effects of self-induction are negligible.

II–3. In quantum mechanics, the one-dimensional motion of a particle of mass m in
a potential V (x) is represented by a wave function ψ(x, t).

(a) Show that the time variations of the expectation values of the position
and momentum operators are given by

d

dt
〈x〉 = 〈p〉

m
, and

d

dt
〈p〉 = −

〈
dV

dx

〉
. (II–1)

(b) What do these results imply for the motion of a strongly localized wave-
packet?

II–4. The water molecule has a dipole moment ~p0 of a fixed size. In the fluid state
the dipoles point in different directions. The application of a small electric field
~E causes the fluid to develop a net polarization ~P .

(a) Use classical physics to derive a formula for the polarization as a function
of p0, E, and temperature T , for a fluid with a density of n water molecules
per unit volume.

(b) Derive an expression for the dielectric function of the fluid.
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I-1

a) Inside the ball

ϕ =

∫ r

0

4πr′2dr′ρ

4πε0r
+

∫ R

r

4πr′2dr′ρ

4πε0r′
=

ρ

2ε0
(R2 − r2/3)

=
3Q

8πε0R3
(R2 − r2/3)

Outside the ball

ϕ =
Q

4πε0r

b) Dropping the constant term, the potential energy inside the ball is

U =
−qQr2
8πε0R3

=
1

2
m

|qQ|
4πε0mR3

r2

Neglecting all radiations and frictions, this leads to a harmonic motion

r = R cos
(
t

√
|qQ|

4πε0mR3

)

this means that the object will come back to its initial position.

I-2

The hard wall is equivalent to the boundary condition

ψ(0) = 0

which eliminates all SHO wave functions with even symmetry. The remaining states correspond to odd n; therefore
the spectrum is

En =
√
k/m(2n+

3

2
) n = 0, 1, 2, · · ·

I-3

Define

r ≡ VB
VA

The first law of thermodynamics reads

UB − UA =WAdiabatic = −
∫ VB

VA

pdV = −αV −2/3
A (1− r−2/3)

a) The work is

Wa = −
∫ VB

VA

pdV = −αV −2/3
A (r − 1)
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therefore the heat is

Qa =WAdiabatic −Wa = αV
−2/3
A (r + r−2/3 − 2)

b) Similar to the previous part

Wb = −
∫ VB

VA

pdV = −α
2
V

−2/3
A (r − 1)(1 + r−5/3)

Qb =WAdiabatic −Wb =
α

2
V

−2/3
A (r − r−5/3 + 3r−2/3 − 3)

I-4

a)

ΦM =
1

2
µ0QM

( vt√
L2 + v2t2

− sgn(t)
)

b)

E = −dΦM

dt
− µ0IM

= −1

2
µ0QM

[L2 + v2t2 − v2t2

(L2 + v2t2)3/2
v − 2δ(t)

]
− µ0QMδ(t)

= −1

2
µ0QML

2v(L2 + v2t2)−3/2

c)

Q =

∫ E2

R
dt =

µ2
0Q

2
Mv

4LR

∫ +∞

−∞

dx

(1 + x2)3

=
3πµ0Q

2
Mv

32LR

II-1

In the CM, the energy is

T = 2× 1

2
m(v/2)2 =

mv2

4

at max compression

U =
1

2
kA2 =

mv2

4

leading to

A =

√
mv2

2k
≈ 8.77mm
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II-2

D =
Q(t)r̂

4πr2

J =
D

ρε
=

Q(t)r̂

4πρεr2

leading to

Q̇(t) = − 1

ρε
Q(t) =⇒ Q(t) = Qe−t/ρε

V (t) =
Qe−t/ρε

4πεa

The half-life is
τ = ρε log(2)

II-3

a)

d

dt
⟨x⟩ = d

dt
⟨ψ|x |ψ⟩ = i ⟨ψ| [H,x] |ψ⟩

=
i

2m
⟨[p2, x]⟩ = ⟨p⟩

m
■

d

dt
⟨p⟩ = i⟨[V (x), p]⟩ = −⟨V ′(x)⟩ ■

b) The location of a strongly localized wave function in the phase space (say its Werner function), follows a
classical path.

II-4

a, b) In the presence of an external field Ez, the distribution of the dipole moment over the unit sphere will be
proportional to

exp(βp0E cos θ)

therefore

⟨cos θ⟩ =
∫ π

0
dθ sin θ cos θeβp0E cos θ

∫ π

0
dθ sin θeβp0E cos θ

= coth(βp0E)− 1

βp0E

Therefore
P = np0⟨cos θ⟩Ê

Which gives

χe =
βnp20
ε0

g(x)
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where

x ≡ βp0E ; g(x) =
coth(x)

x
− 1

x2

for small fields, this is

χe =
βnp20
3ε0
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