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Candidacy Exam

Department of Physics

October 1, 2011

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:
∫ ∞

0

e−x
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√
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2
. (I–1)

∫ ∞

0
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Laplacian in spherical polar coordinates (r, θ, φ):

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (I–3)

Laplacian in cylindrical coordinates (r, θ, z):
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∂θ2
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∂z2
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I–1. (a) In an experiment, a particle A of mass m is at rest on a smooth horizontal
table. A particle B of mass bm, where b > 1, is projected along the table
directly towards A with speed u.

B A

The collision is perfectly elastic. Find an expression for the speed of A
after the collision in terms of b and u. What is the maximum possible
ratio of the final speed of A to the initial speed of B. All motion is along
a single line.

(b) In a second experiment, particles B1, B2, . . . , Bn and A are in a line on
the table as follows:

B
1

AB
n

B
2 ...

Particle B1 is projected directly towards the other particles, with speed
u. The other particles B2, B3, . . . , Bn, and A are at initially at rest.
The mass of Bi (i = 1, 2, . . . , n) is λn+1−im, where λ is a number that
is greater than 1; the mass of A is m. All collisions are perfectly elastic.
Show that, by choosing n sufficiently large, there is no upper limit on the
speed at which A can be made to move. In the case λ = 4, determine the
least value of n for which A moves at more than 20u.

I–2. (a) In quantum mechanics, the wave function Ψ for a single particle defines
the probability density ρ = |Ψ|2. Find an expression for the probability

current ~J such that a continuity equation results.
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(b) Consider a scattering problem in one dimension such that stationary states
have the asymptotic form ψ(x) = Aeikx + Be−ikx to the left of the scat-
tering potential, and ψ(x) = Feikx +Ge−ikx to the right. The solution of
the Schrödinger equation gives a relation between the coefficients of the
form (

B
F

)
= S

(
A
G

)

where S is a matrix called the S-matrix. Using the results of part (a),
show that S is unitary.

I–3. (a) Use Maxwell’s equations to show that the electromagnetic field satisfies
the continuity equation

∂ρ

∂t
+ div ~J = 0 .

(b) Explain how this equation implies charge conservation.

(c) What is the analogous equation for energy conservation of the electromag-
netic field?

I–4. A self-contained machine only inputs two equal steady streams of hot and cold
water at temperatures T1 and T2. Its only output is a single high-speed jet of
water. The heat capacity per unit mass of water, C, may be assumed to be
independent of temperature. The machine is in a steady state, and the kinetic
energy in the incoming jets is negligible.

(a) What is the speed of the outgoing jet in terms of T1, T2 and T , where T
is the temperature of the outgoing jet?

(b) What is the maximum possible speed of the jet?
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Candidacy Exam

Department of Physics

October 1, 2011

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:
∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Laplacian in spherical polar coordinates (r, θ, φ):

∇2f =
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. (II–3)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
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∂r

)
+

1

r2
∂2f

∂θ2
+
∂2f
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. (II–4)

II–1. A hoop of mass m and radius r rolls without slipping down a wedge of mass M .
The wedge makes a fixed angle α with the horizontal, and it is on a frictionless
horizontal surface:

M
α

����������
����������
����������
����������

m,r

(a) Derive equations of motion for the system.

(b) Obtain an expression for the position and velocity of the wedge as a func-
tion of time.

II–2. (a) An electron of definite momentum starts in a large potential-free region
going towards a region where the electrical potential is φ. The boundary
between the regions is sharp and perpendicular to the momentum of the
electron. Find a suitable wave function for this situation.

(b) An experiment to test this is made by aiming a well-collimated beam of
electrons in the potential-free region perpendicularly towards the region
boundary. The electrical potential in the other region is φ = −3 V, the
de Broglie wavelength of the electrons is 0.5 nm, and the beam current is
2µA. Determine how much current is reflected at the boundary.

II–3. A perfectly conducting sphere of radius a has no net charge and is not grounded.
A constant external electric field ~E = ẑE is applied to the sphere:
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(a) What is the electrostatic potential outside of the sphere?

(b) What is the surface charge density on the surface of the sphere?

(c) What is the polarizability of the sphere? (The polarizability α is the ratio
of p/E, where p is the net dipole moment of the sphere.)

II–4. Liquid helium-4 has a normal boiling point of T0 = 4.2K (at a pressure p0 =
1atm). However, at a lower pressure p1 = 1.3 × 10−3atm, it boils at a lower
temperature T1 = 1.2K.

The Clapeyron-Clausius equation, describing the slope of the phase equilibrium
line, is

dp

dT
=

∆s

∆v
(II–5)

where ∆s and ∆v are the differences in molar entropy and molar volume be-
tween two phases, respectively. Assuming that gaseous helium is an ideal gas,
use this equation to estimate the average latent heat of vaporization for tem-
peratures between T0 and T1 in terms of p0, p1, T0, T1 and the gas constant R.
Evaluate this value for the given pressures and temperatures.
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I-1

a) Conservations of momentum and energy




bu = bw + v

bu2 = bw2 + v2

lead to

v =
2b

1 + b
u

This satisfies
v

u
≤ 2

b)

vi+1 =
2λ

1 + λ
vi

leading to

vf =
( 2λ

1 + λ

)n

u

for λ > 1, this can grow indefinitely if the number of particles is allowed to grow. For λ = 4, we need

(
4

3
)n > 20 ⇒ n ≥ 11

I-2

a)
∂ρ

∂t
=

∂

∂t
|ψ|2 =

∂

∂t
ψ∗ψ = ψ∗ ∂ψ

∂t
+
∂ψ∗

∂t
ψ

= −iψ∗
(
− ∇2

2m
+ V

)
ψ + iψ

(
− ∇2

2m
+ V

)
ψ∗

=
i

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗)

This suggests the definition

J ≡ i

2m
(ψ∇ψ∗ − ψ∗∇ψ)

b) In general, for
ψ = aeikx + be−ikx

we have

J =
k

m
(|a|2 − |b|2)x̂

In a stationary states, we have

J
∣∣∣
+∞

−∞
= 0

equivalent to
|B|2 − |A|2 + |F |2 − |G|2 = 0

which is the same as saying that S is unitary. ■
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I-3

a) Applying the divergence operator to

∇×B = µ0(J+ ε0
∂E

∂t
)

gives

0 = ∇ · J+ ε0
∂

∂t
∇ ·E = ∇ · J+

∂ρ

∂t

which is what we wanted to prove.

b) Assuming there are no currents at the edges of the universe, we have

dQ

dt
=

d

dt

∫

universe

ρdV =

∫

universe

∂ρ

∂t
dV =

∫

universe

∇ · J dV =

∮

∂ universe

J.da = 0

c)

u ≡ 1

2
ε0E

2 +
B2

2µ0

∂u

∂t
= ε0E.

∂E

∂t
+

B

µ0
.
∂B

∂t
= −J.E+

1

µ0

[
E.(∇×B)−B.(∇×E)

]

= −E.J−∇ ·
(E×B

µ0

)

This simply means that the electromagnetic energy is not conserved on its own, but can be converted into
heat/mechanical energy via the E.J term.

I-4

a) Let’s assume that the input streams have maximum flow Q, then, for temperatures less than (T1 + T2)/2, the
cold input is fully open and a fraction w ∈ [0, 1] of the hot input is mixed with it. The fraction is given by

w =
T − T1
T2 − T

Which means

Qout = (1 + w)Q =
T2 − T1
T2 − T

Q

in general,

Qout =
T2 − T1

max(T2 − T, T − T1)

b) The maximum out flow is clearly less than 2Q.

II-1

a) Let X be the displacement of the wedge to the left. Then, a careful evaluation of the geometry of the problem,
leads to the following expressions for the kinetic and potential energy in terms of X

T =
1

2
m
(M +m

m cosα

)2

Ẋ2

and
U = −(M +m)gX tanα.
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Hence

Ẋ = gt
m sinα cosα

2M +m(1 + sin2 α)

X =
1

2
gt2

m sinα cosα

2M +m(1 + sin2 α)

II-2

a) This is a 1D problem with potential energy

V =





0 x ≤ 0

−eϕ x > 0

The suitable wavefunction is

ψ =





eikx + re−ikx x ≤ 0

teiκx x > 0

with
κ ≡

√
k2 + 2meϕ

r ≡ 1− κ/k

1 + κ/k
; t ≡ 2

1 + κ/k

b)

Ir = r2Ii ≈ 60nA

II-3

a) We already know that a constant polarization

P = 3ε0Eẑ

cancels the external uniform electric field. Outside the sphere, the potential, is the sum of a uniform field potential
and a pure dipole term

ϕ = E cos θ
(a2
r2

− 1
)

b)

σ = 3ε0E cos θ

c)

α = 4πa3ε0
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II-4

First, since vg ≫ vl, we approximate the relation by omitting vl in the denominator. Next

vg =
RT

p
; λ = T (sg − sl)

The CC equation then becomes
dp

dT
=

λp

RT 2

in other words

λ = R
d(log p)

d(−1/T )
≈ R

∆(log p)

∆(−1/T )
≈ 92.8 J/mol
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