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Candidacy Exam

Department of Physics

October 6, 2012

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023mol−1

Boltzmann’s constant kB 1.381× 10−23 JK−1

Electron charge magnitude e 1.602× 10−19C
Gas constant R 8.314 Jmol−1K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108ms−1

Permittivity constant ǫ0 8.854× 10−12 Fm−1

Permeability constant µ0 1.257× 10−6NA−2

Gravitational constant G 6.674× 10−11m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105Nm−2

Stefan-Boltzmann constant σ 5.67× 10−8Wm−2K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3MeV c−2

Origin of temperature scales 0 ◦C = 273K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x2

dx =

√
π

2
. (I–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n! . (I–2)

∫ 1

0
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√
x

1− x
=

π

2
. (I–3)

Laplacian in spherical polar coordinates (r, θ, φ):
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1

r2
∂

∂r

(
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∂r

)
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∂
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(
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∂θ

)
+
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Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+

∂2f

∂z2
. (I–5)

I–1. A frictionless sliding block with mass m1 and translational velocity v0 strikes
a massless spring with spring constant k connected to a stationary frictionless
block of mass m2 = m1 (see figure). A maximum compression of the spring
occurs at the instant the velocities of both blocks are equal. If m1 = m2 =
0.1 kg and k = 6.5× 104 N/m, what is the maximum compression of the spring
when the initial translational velocity of the first block is v0 = 10m/s?

v0

m2m1

I–2. The correlation function of two operators O1 and O2 in some state |s〉 is defined
to be the expectation value of the product of the two operators in this state,

〈s|O1O2|s〉 .

For a simple one-dimensional harmonic oscillator evaluate the correlation func-
tion of O1 = x(t) and O2 = x(0) in the ground state and the first excited
state,

〈0|x(t)x(0)|0〉 and 〈1|x(t)x(0)|1〉 .
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I–3. A soap film is supported by a wire frame which has one side of length l that
can move without friction. The surface tension of the film exerts a force

F = 2σl

on the loose side and its direction is such that it tends to decrease the area of
the film. The surface tension σ depends on temperature as

σ = σ0 − αT ,

with σ0 and α being constants independent of T or of the distance x between
the moving side and the opposite one (see figure).

x

l
−2σl

(a) Assuming that x is the only significant external parameter, write a relation
expressing the change dE in the mean energy of the film in terms of
the heat dQ absorbed by it and the work done by it in an infinitesimal
quasistatic process in which x changes by dx.

(b) Compute the change in energy ∆E = E(x) − E(0) of the film when it is
stretched from x = 0 to some length x at constant temperature T = T0.

(c) Compute the work done on the film to stretch it at fixed temperature T0

from x = 0 to some length x.

I–4. A charged particle of mass m and charge q is confined in a two dimensional
harmonic oscillator potential, in the (x, y) plane:

V (x, y) =
k

2
(x2 + y2) .

(a) Determine the frequency of the oscillations.

(b) A magnetic field is applied in the z direction. Determine the new frequen-
cies of oscillation for clockwise and counterclockwise rotation.
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Candidacy Exam

Department of Physics

October 6, 2012

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023mol−1

Boltzmann’s constant kB 1.381× 10−23 JK−1

Electron charge magnitude e 1.602× 10−19C
Gas constant R 8.314 Jmol−1K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108ms−1

Permittivity constant ǫ0 8.854× 10−12 Fm−1

Permeability constant µ0 1.257× 10−6NA−2

Gravitational constant G 6.674× 10−11m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105Nm−2

Stefan-Boltzmann constant σ 5.67× 10−8Wm−2K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3MeV c−2

Origin of temperature scales 0 ◦C = 273K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n! . (II–2)

∫ 1
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=
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2
. (II–3)

Laplacian in spherical polar coordinates (r, θ, φ):
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(
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)
+

1

r2 sin θ
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(
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Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+

∂2f

∂z2
. (II–5)

II–1. A non-relativistic particle of mass m constrained to move in the (y, z) plane
moves freely except in a region where it encounters a constant potential, V =
V0. This region is bounded by a circle of radius R and a line at z = 0 as shown
in the figure. The center of the circle is on the z axis. The thickness of the
non-zero potential region is t. Consider the limit where t → 0 (t ≪ R). The
particle enters from the left, a distance y0 from the axis and initial velocity v in
the z direction. It passes through the non-zero potential region. Assume that
the impulse from the potential change is directed perpendicular to the surfaces.

V=V0

y0

z

y

V=0 V=0

vm

t

radius=R

(a) Derive the equivalent of Snell’s law for the change in direction when this
particle passes through a surface with an abrupt change in potential.
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(b) At what z position does the particle cross the z axis? Give the answer in
terms of the mass m of the particle, its initial velocity v in the z direction,
the potential V0 in the bounded region, the radius R of the first surface
and the initial position y0 in the y direction.

II–2. P is a beam of atoms with spin-1/2 and zero orbital angular momentum, all with
angular momenta h̄/2 along the x axis. Q is a beam of similar but unpolarized
atoms.

(a) What is the spin state function of P in terms of the eigenfunctions of Sz?

(b) If the two beams are passed though a Stern-Gerlach apparatus with its
magnetic field along the z axis, is there any difference between the emerg-
ing beams in the two cases? Recall that the SternGerlach experiment
involves sending a beam of particles through an inhomogeneous magnetic
field and observing their deflection.

(c) How could the difference between the beams P and Q be detected exper-
imentally?

II–3. The Clausius-Clapeyron equation expresses the effect of pressure on the melting
temperature of ice, viz.

dp

dT
=

L

(vw − vi)T
,

where L is the latent heat of fusion (energy per unit mass) and vi and vw are
the volumes of unit mass of ice and water at absolute temperature T .

Consider now a mass of 1 kg placed upon a block of ice at temperature T =
273K. The weight bears down on an area of 1mm2 causing the ice to melt; the
latent heat is L = 333 kJ kg−1. Assuming there is no heat transfer form this
mass, determine by how much the temperature of the ice must be lowered for
it to resist penetration by the mass.

Hint: The density of ice ρi in relation to the density of cold water ρw is related
to the fact that ice floats 11/12 submerged.

II–4. Consider an infinite grounded conducting wall. An ion of charge q and mass
m is placed at rest at distance a from it. The ion will be attracted towards the
wall. Find the time T in which the ion reaches the wall.
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I-1

Let’s use the conservation laws:
1

2
m1v

2
0 =

1

2
(m1 +m2)v

2
1 +

1

2
kx2

m1v0 = (m1 +m2)v1

solved as

x =

√
m1m2v20

k(m1 +m2)
≈ 0.769mm

I-2

⟨n|x(t)x(0) |n⟩ = ⟨n| eiHt/ℏxe−iHt/ℏx |n⟩ = ⟨n|
(
x cosωt +

p

mω
sinωt

)
x |n⟩

For the x2 term I use the virial theorem to find ⟨n|x2 |n⟩ = (n+ 1/2)ℏ/ωm. For the px term, it’s best to write the
operators down in terms of creation and annihilation operators

⟨n|x(t)x(0) |n⟩ = (n+
1

2
)

ℏ
ωm

cos(ωt)− iℏ
2mω

sinωt ⟨n| (a− a†)(a+ a†) |n⟩ = ℏ
ωm

[
n cosωt+

1

2
e−iωt

]

I-3

a)
dE = d̄Q+ 2σldx

b) The free energy is a function of state with

dF = −SdT + 2l(σ0 − αT )dx

leading to the Maxwell relation (
∂S

∂x

)

T

= 2lα

integrated as
S = f(T ) + 2lαx

Now we may write the change in energy as

∆E =

∫
dE =

∫
(TdS + 2σldx) = 2lσ0

∫
dx = 2lσ0x

c) The work is

W =

∫
2σldx = 2l(σ0 − αT )x
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I-4

Define

ω0 ≡
√
k/m ; ωB =

qB

2m

a) ω =
√
k/m

b) The constant magnetic field is given by B = ∇×A with A = 1
2Brφ̂. The Hamiltonian is

H =
(i∇+ qA)2

2m
+

1

2
kr2

=
−∇2

2m
+
iqB

2m
∂φ +

1

2
(k +

q2B2

4m
)r2

= H1 − ωBLz

Here H1 is an isotropic 2D harmonic oscillator with ω1 =
√
ω2
0 + ω2

B . Being isotropic, it commutes with Lz, and
therefore we have

U(t) ≡ exp(−iHt) = exp(−iH1t− iωBtLz) = exp(−iωBtLz) exp(−iHt) = Rz(−ωBt) exp(−iH1t)

In other words, the time evolution of this system, differs from the harmonic oscillator H1 by a constant rotation
rate per time. Circular motions governed by H1 have frequencies ±ω1, and therefore, possible values of d⟨φ⟩/dt are

d⟨φ⟩
dt

∣∣∣
±
= −ωB ±

√
ω2
B + ω2

0

or

ωCW = ωB +
√
ω2
B + ω2

0 ; ωCCW = −ωB +
√
ω2
B + ω2

0

in accordance with the classical theory.

II-1

a) The transverse momentum is conserved

vi sin θi = vr sin θr

b) The effective index of refraction is found using the conservation of energy

n ≡ vout
vin

=
1√

1− 2V0/mv2

The first incident angle is

θi = arcsin
y0
R

Then, the refraction tilts the direction of the particle by an amount

ψ1 = θi − θr = arcsin
y0
R

− arcsin
y0
nR

The final tilt angle is

ψ = arcsin
[
n sin

(
arcsin

y0
R

− arcsin
y0
nR

)]

The particle crosses the z axis at

z =
y0

tanψ
= y0 cot

{
arcsin

[
n sin

(
arcsin

y0
R

− arcsin
y0
nR

)]}
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II-2

a)

|P ⟩ = 1√
2
(|↑⟩+ |↓⟩)

b) No; both beams split in half.

c) By measuring the spin angular momentum along any direction that is not perpendicular to the x axis. It is
most vivisble by measuring the angular momentum along the x axis where all of the atoms from P end up in one
slot while the Q beam splits in half again.

II-3

δT =
δp× T × (vw − vi)

L
=
MgTvw
AL

× (1− 12

11
) ≈ −0.73K

II-4

1

The attractive force at a distance x from the wall is

−mẍ =
q2

16πε0x2

or

ẋ
dẋ

dx
= − q2

16πε0m

1

x2

integrated as

dx

dt
=

−q√
8πε0m

√
1

x
− 1

a

Now the time can be written as an integral

T =

√
8πε0m

q
a3/2

∫ 1

0

dx√
1/x − 1

=

√
2π3ε0ma3

q2

1There is a way to solve this without using calculus as well. Cf. Kepler’s law!
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