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Candidacy Exam

Department of Physics

February 4, 2012

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

−∞
e−x
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dx =
√
π. (I–1)

∫ ∞

0
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)
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Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+
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r2
∂2f

∂θ2
+
∂2f

∂z2
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I–1. A body of mass m moves in one dimension under the influence of a conservative
force with potential energy U(x).

(a) Show that when this body is displaced a small amount from its position
of stable equilibrium x = x0, it experiences a restoring force with force

constant

[
d2U

dx2

]

x=x0

.

(b) Let the potential energy have the form

U(x) =
−cx

x2 + a2
, (I–5)

where a and c are positive constants. Find the position of stable equilib-
rium and calculated the angular frequency of the oscillations.

(c) Sketch the form of this potential and the force resulting from it as a
function of x.

I–2. A rectangular loop of wire is placed next to a long straight piece of similar
wire, each carrying a steady current 2.5 A in the directions shown:

3.0cm

2.5A

10.0cm

5.0cm

2.5A
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Find (a) the magnitude, and (b) the direction of the net force acting on the
loop.

I–3. A spin-half particle has magnetic moment µ and is placed in a constant mag-
netic field B that points in the z direction. What is an appropriate matrix
representation of the three spin operators Sx Sy, and Sz, and why? What is
the quantum-mechanical Hamiltonian for the spin state of the system?

Initially, at time t = 0, the particle’s spin is in +x direction. Find the time-
dependence of the spin state of the particle as a function of t, in a basis of
eigenstates of Sz.

If the y-component of spin is measured at a time t1, what are the possible
outcomes and their probabilities?

I–4. An ideal gas is contained in a large jar of volume V0. Fitted to the top of the
jar is a tube of cross sectional area A in which a ball of mass m fits snugly and
can slide without friction. The tube points upwards, and the jar is otherwise
sealed.

Due to the weight of the ball the equilibrium pressure in the jar is slightly higher
than the atmospheric pressure p0. If the ball is displaced slightly it will execute
simple harmonic oscillator motion. Assuming that, from the perspective of the
gas, this motion is adiabatic and defining γ = Cp/Cv, find a relation between
the oscillation frequency and γ, A, p0, m, V0. In your solution, you should take
V0 to be the volume of gas when the ball is at the equilibrium point.
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Candidacy Exam

Department of Physics

February 4, 2012

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:
∫ ∞

−∞
e−x

2

dx =
√
π. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Laplacian in spherical polar coordinates (r, θ, φ):
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. (II–3)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r
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(
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+
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II–1. A small meteor approaches Earth with impact parameter b and velocity at
infinity v∞. Find, as a function of the radius of the Earth a, of v∞, and of the
escape velocity v0, the smallest impact parameter for which the meteor will not
strike the Earth. The escape velocity is defined as the velocity of a particle
such that it has zero total energy in the gravitational field of the Earth.

II–2. Two identical parallel metallic plates each have an area A. Their vacuum gap
is d.

(a) What is the capacitance?

(b) If a voltage V is applied between the gaps, what is the stored energy?

(c) How does the stored energy change if the vacuum gap is replaced by a
material with dielectric constant ε > ε0, while the capacitor is kept at
constant V ?

(d) If the dielectric material is only halfway into the gap, is the force on it
pulling into the gap, or out of it?

II–3. A particle of mass m moves in one dimension. It is found that the exact
eigenfunction for its quantum mechanical ground state is

ψ(x) =
A

cosh(λx)
, (II–5)

where A and λ are constants. Assuming that the potential function V (x) van-
ishes at infinity (|x| → ∞), what are: (a) the ground state energy eigenvalue,
and (b) V (x)?
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II–4. (a) Consider an ideal gas of nitrogen molecules (N2) at temperature T =
300 K. What is the root-mean-square speed of the molecules, given that
their mass is 2× 14× 1.67× 10−27 kg?

(b) Now suppose spherical droplets of water, of diameter 1.2 microns are in-
troduced into this gas at this same temperature, such that equilibrium is
maintained. What is the root-mean-square speed of the droplets, given
that the density of water is 1.0× 103 kg/m3?
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I-1

a)
F = −U ′(x) = −U ′(x0)− (x− x0)U

′′(x0)− · · · ≈ −k(x− x0)

with
k = U ′′(x0)

b) The equilibrium in x < 0 is unstable. Instead, there is a stable equilibrium at

U ′(x0 > 0) = 0 ⇔ x0 = a

The frequency is

ω =

√
k

m
=

√
c

2ma3

c) The curves are in units where c = a = 1. The red curve is the potential and the blue curve is the force.

I-2

a, b) Let ẑ point in the right direction. Then

F = Iloop

∮

loop

dl×Bwire =
µ0

2π
IloopIwire

∮

loop

dl× φ̂

s
=
µ0

2π
IloopIwire

(
−10

3
ŝ+

10

8
ŝ

)
≈ 2.60× 10−6N

I-3

A representation for the proper matrices are

S =
ℏ
2

[(
1

1

)
,

(
−i

i

)
,

(
1

−1

)]
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because they satisfy the algebra
[Si, Sj ] = iℏεijkSk

and
∑

i S
2
i = 3

4ℏ
2

The Hamiltonian is

H = −µ.B = −γBSz = −γBℏ
2

(
1

−1

)

where γ = µ/S is the gyromagnetic ratio of the particle.

From this, we may find the unitary evolution operator as

U(t) ≡ exp(−iHt/ℏ) =
(
exp(iγBt/2)

exp(−iγBt/2)

)

therefore

|ψ(t)⟩ = 1√
2
U(t)

(
1

1

)
=

1√
2

(
exp(+iγBt/2)

exp(−iγBt/2)

)

The outcome will be in {±1}, with

P+ = | ⟨+, y|ψ(t)⟩ |2 = |1
2
(1 i)

(
exp(+iγBt/2)

exp(−iγBt/2)

)
|2 =

1

2
[1 + sin(γBt)]

and

P− = 1− P+ =
1

2
[1− sin(γBt)]

I-4

The equation of motion is

mz̈ = Aδp = −Aγpeq.
δV

V
= −γA

2

V
(p0 +

mg

A
)z

Leading to

ω2 =
γA2

mV
(p0 +

mg

A
)

II-1

Let’s start by asking what the nearest distance to the Earth will be, assuming no collision happens. At the nearest
distance rp, we may impose the conservation laws of energy and angular momentum

rpvp = v∞b ;
1

2
v2p −

GM

rp
=

1

2
v2∞

solving for rp gives

rp = −GM
v2∞

+

√(
GM

v2∞

)2

+ b2

On the other hand, we have GM = 1
2av

2
0 . Therefore, the no-collision condition becomes

a < − av20
2v2∞

+

√
b2 +

(
av20
2v2∞

)2

equivalent to

b > a

√
1 + (

v0
v∞

)2
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II-2

a)

C =
ε0A

d

b)

U =
1

2
CV 2 =

ε0A

2d
V 2

c) It increases by a factor ε/ε0

d) If one slowly lets the dielectric go in, the capacity increases an amount ∆C. The batteries therefore pump a
charge ∆Q = V∆C to the capacitor, doing a work V 2∆C. But the energy increases only by 1

2V
2∆C, therefore the

person holding the dielectric has done negative work, meaning the force was pulling the dielectric inside throughout.

II-3

a, b) Firs of all, the wave function has no roots, meaning that it is the ground state. It decays exponentailly as
exp(−λx), suggesting a binding energy

Eg = −ℏ2λ2

2m

The potential is

V (x) =
ℏ2

2m

(
ψ′′

ψ
− λ2

)
= −ℏ2λ2

m
sec2(λx)

II-4

a)

vr.m.s. =

√
3kBT

m
≈ 515m/s

b)

vr.m.s. =

√
3kBT

m
≈ 3.71mm/s
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