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Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 2nd, 2013

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:
∫ ∞

0

e−x
2

dx =

√
π

2
. (I–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (I–2)

Laplacian in spherical polar coordinates (r, θ, φ):

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (I–3)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+
∂2f

∂z2
. (I–4)

I–1. Initially a rigid bar is suspended by vertical inextensible light strings at its
ends, so that the bar is horizontal:

L

The bar is of length L, its mass m is uniformly distributed along its length,
and its width is negligible.

(a) Find the moment of inertia of the bar about its center and about its end.

(b) The string on the right is cut:

Find the tension in the remaining string very shortly after the other string
is cut.

I–2. Consider a system of two spin-1/2 particles interacting through the Hamitonian

H = A(S2
x − S2

y) +BS2
z , (I–5)

where A and B are constants and Sx, Sy and Sz are the three components of
the total spin of the system. Find the energy spectrum and the corresponding
eigenvectors.
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I–3. A plane-parallel 15nF capacitor is connected across 70V battery. How much
work must be done to double the plate separation

(a) with the battery connected?

(b) with the battery disconnected?

I–4. A box of volume V0 has a small hole of area A0. The box initially has one mole
of an ideal gas at t = 0, which is at an initial temperature T (t = 0). Find the
rate of energy flow through the hole as a function of temperature and other
parameters.
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Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 2nd, 2013

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Laplacian in spherical polar coordinates (r, θ, φ):

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (II–3)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+
∂2f

∂z2
. (II–4)

II–1. Consider a particle that can move freely along a circular hoop that rotates
about a vertical axis with angular velocity Ω. The radius of the hoop is R.

(a) Find the Lagrangian.

(b) Find the equations of motion and determine the equilibrium position(s) of
the particle.

(c) Determine which of the equilibrium position(s) is stable, and under what
conditions.

Ω

II–2. A particle of mass m is confined to a one-dimensional region 0 ≤ x ≤ a. At
time t = 0, its normalized wave function is

ψ(x, t = 0) =

√
32

17a

[
1 +

1

2
cos

(
2πx

a

)]
sin

(
2πx

a

)
. (II–5)
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(a) Obtain the wave function at a later time t = t0.

(b) Find the average energy at t = 0 and at t = t0.

(c) Obtain the probability that at t = t0, the particle is found in the left
quarter of the region, i.e., in 0 ≤ x ≤ a/4.

II–3. Consider a grounded conducting sphere of radius R. A point-like electric dipole
of moment p is placed at distance a > R from the center of the sphere. The
dipole is oriented along the radial direction. Find the induced charge distribu-
tion on the surface of the sphere.

II–4. Assume that the earth and the sun are perfect black bodies.

(a) How much energy does the sun radiate in Watts?

(b) What fraction of the sun’s radiation is captured by the earth?

(c) What is the earth’s intake of radiation energy from the sun?

(d) Assume that the energy intake from the sun equals the energy radiated by
the earth. Then derive the average temperature at the surface of the earth.

Apart from constants included in the table of fundamental constants, other
constants you may need are:

• Radius of earth is RE = 6380 km

• Radius of sun is RS = 7.0× 108 m

• Sun-earth separation is RSE = 1.5× 1011 m

• Sun’s surface temperature is TS = 6230 K
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I-1

a)

ICM =

∫ +L/2

−L/2

m
dx

L
x2 =

1

12
mL2

ILeft = ICM +m(L/2)2 =
1

3
mL2

b) Call it T , then the equations for acceleration and angular acceleration read

mg − T = m
L

2
α

mg
L

2
=

1

3
mL2α

yielding

T =
1

4
mg

I-2

Defining
S± = Sx ± iSy

the Hamiltonian can be re-written as

H =
A

2
(S2

+ + S2
−) +BS2

z

The Hilbert space is the direct sum of two parts:

1

2
⊗ 1

2
= 0⊕ 1

The spin zero part is the singlet state

|j = 0,m = 0⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩)

And the spin one part is
|j = 1,m = −1⟩ = |↓↓⟩

|j = 1,m = 0⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩)

|j = 1,m = +1⟩ = |↑↑⟩

Interestingly, the Hamiltonian respects this decomposition as well

H = H0 ⊕H1

with

H0 = (0) ; H1 =



B 0 2A
0 0 0
2A 0 B



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Therefore, the diagonalization is as follows

E = B ± 2A : |±⟩ = 1√
2
(|↑↑⟩ ± |↓↓⟩)

E = 0 : |0±⟩ =
1√
2
(|↑↓⟩ ± |↓↑⟩)

I-3

The attractive force is given by

F =
Q2

2Cd
=
CV 2

2d

While C itself depends on the distance d as C = K/d.

a) Doubling the distance, doubles the capacitance. With the battery connected, the potential difference is held
constant, and therefore

W =
1

2
KV 2

∫ 2d

d

dx

x2
=

1

2
KV 2 1

2d
≈ 1.84× 10−5 J

b) Here, the charge is constant

W =
Q2

2K

∫ 2d

d

dx =
Q2

2C
=

1

2
CV 2 ≈ 3.68× 10−5 J

I-4

Of the

dN = ndV
A0 cos θ

4πr2

particles in a volume element dV , that are aimed at the hole, those that are moving faster than r/δt will make it
out of the container before a time δt passes, and carry an energy 1

2mv
2 with themselves. Therefore, if f(v) is the

speed probability distribution of the particles, then

δE = 2πn

∫ ∞

0

dr r2
∫ π/2

0

dθ sin θ
A0 cos θ

4πr2

∫ ∞

r/δt

1

2
mv2f(v)dv

=
1

8
mnA0

∫ ∞

0

dr

∫ ∞

r/δt

v2f(v)dv =
1

8
mnA0δt

∫ ∞

0

dvf(v)v3

= δt× nkTA0

√
2kT

πm
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II-1

a)

L = T − V =
1

2
mR2(θ̇2 + sin2 θΩ2) +mgR cos θ

This is equivalent to a non-rotating frame with potential

Veff(θ) = −mgR cos θ − 1

2
mR2Ω2 sin2 θ

b, c) Demanding θ̇ = 0 to be a solution, follows the equation

sin θ

(
1− RΩ2

g
cos θ

)
= 0

The equilibria at θ ∈ {0, π} are always present. As for their stability, the one at θ = π is always unstable and the
one at θ = 0 is stable if and only if Ω2 ≤ Rg (note that the condition includes the special case of equality as well,
it is a quartic stability at that point). As soon as Ω > gR, two new equilibria appear at θ± = ± arccos

(
gR/Ω2

)
;

they are both stable whenever they exist.

II-2

Let us first re-write the wave function in terms of the energy eigenfunctions

ψn =

√
2

a
sin

nπx

a
; En =

n2π2ℏ2

2ma2

ψ(x, t = 0) =
1√
17

[4ψ2(x) + ψ4(x)]

a)

ψ(x, t0) =
1√
17

[
4ψ2(x)e

−iE2t0/ℏ + ψ4(x)e
−iE4t0/ℏ

]

b)

⟨H⟩ = 16E2 + E4

17
=

40π2ℏ2

2ma2
∀t

c)

P =

∫ a/4

0

|ψ(x, t0)|2dx =
2

17a

∫ a/4

0

dx

[
16 sin2

2πx

a
+ sin2

4πx

a
+ 8 sin

2πx

a
sin

4πx

a
cos

(E4 − E2)t0
ℏ

]

=
1

17

[
4 +

1

4
+

16

3π
cos

(E4 − E2)t0
ℏ

]
=

1

4
+

16

51π
cos

(E4 − E2)t0
ℏ
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II-3

Let’s take the positive direction of the dipole p to be pointing outwards from the center of the sphere. The image
charges can be though of as a combination of a dipole and a monopole. The monopole charge of the sphere will be
Q = pR

a2 effectively positioned at R2/a from the center, towards the dipole. There is also a dipole in the opposite
direction, at the same spot, pointing towards the center with magnitude p′ = p(R3/a3). The electric field from a
dipole pointing in the z direction at the center of coordinates, in spherical coordinates, is

E =
p

4πε0r3

(
2 cos θ r̂+ sin θ θ̂

)

Now we focus on finding the surface charge density at an angle θ on the sphere. Here are a few useful definitions

r ≡
(
a2 +R2 − 2aR cos θ

)1/2

r′ ≡
(
R2 +R4/a2 − 2

R3

a
cos θ

)1/2

α = arcsin
R sin θ

r

β = sgn(θ)× arccos

(
R

r′
cos θ − R2

ar′

)

Then

σ =
p

4πa3

{
Ra

r′2
cos(θ − β) +

R3

r′3
[−2 cosβ cos(θ − β) + sinβ sin(β − θ)] +

a3

r3
[2 cosα cos(θ + α)− sinα sin(θ + α)]

}

II-4

a)
L = 4πR2

SσT
4
S ≈ 5.26× 1026

b)

f =
πR2

E

4πR2
SE

=≈ 4.52× 10−10

c)
fL ≈ 2.38× 1017

d)

4πR2
EσT

4
E = fL ⇒ TE = TS

√
RS

2RSE
≈ 301K
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