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Qualifying Exam for Ph.D. Candidacy

Department of Physics

October 11, 2014

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (I–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (I–2)

Laplacian in spherical polar coordinates (r, θ, φ):
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)
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Laplacian in cylindrical coordinates (r, θ, z):
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(
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∂θ2
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I–1. A pair of wheels of radius r are attached to an axle of radius a. They are pulled
over a stepwise obstacle of height h by a rope, as in the diagram. One end of
the rope is attached to the axle. The rope is pulled over the top of the axle,
and it is horizontal where it leaves the axle; you are to neglect the thickness of
the rope. The wheels and axle have mass M and are cylindrically symmetric.
The center of mass of the axle-wheel system is midway between the wheels,
as is the rope. What minimum tension T needs to be applied to the rope to
get the wheel over the obstacle? What minimum static coefficient of friction is
needed such that the wheels roll over the obstacle rather than sliding?

T

r

a

I–2. A conductor of mass m = 160 g and length l = 80 cm is suspended horizon-
tally from two identical massless threads. The system is placed in a vertically
oriented homogeneous magnetic field, with B = 1 T, and flexible cables (which
lie outside the region with the magnetic field) are connected to the conductor
so that a current I = 2 A flows through it.

• Starting with the Lorentz force, derive the magnetic force on the conduc-
tor.

• What is the angle α between the threads and the vertical when the con-
ductor is in its equilibrium position.
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I–3. A particle in a one-dimensional harmonic oscillator potential starts out in the
quantum mechanical state with wave function

ψ(x, t = 0) = A[3ψ0(x) + 4ψ1(x)],

where

ψ0(x) =

(
1

π1/4x
1/2
0

)
exp

[
−1

2

(
x

x0

)2
]

and

ψ1(x) =

(
21/2x

π1/4x
3/2
0

)
exp

[
−1

2

(
x

x0

)2
]

are normalized eigenfunctions of the ground and first excited level, respectively,

and x0 =
√

h̄
mω

is the harmonic oscillator length.

(a) Find A.

(b) What is the form of the state ψ(x, t) and the probability density |ψ(x, t)|2
at time t > 0?

(c) Find the expectation value of the position in state ψ(t) at arbitrary time
t.

(d) Suppose you measure the energy of this particle. What values could you
get and with what probabilities?

I–4. A cylinder 1 m long has a thin, massless, piston clamped in the middle. The
cylinder is in a heat bath at T = 300 K. The left side of the cylinder contains
1 mole of helium gas at 4 atm. The right side of the cylinder has helium gas
at a pressure of 1 atm. Let the piston be released to slide to an equilibrium
position. Assume that the piston is connected to the outside so that it moves
slowly.

(a) What is the final position?

(b) How much heat is transmitted to the bath in the process of reaching
equilibrium?
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Qualifying Exam for Ph.D. Candidacy

Department of Physics

October 11, 2014

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Laplacian in spherical polar coordinates (r, θ, φ):
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. (II–3)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂
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(
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)
+

1

r2

∂2f

∂θ2
+
∂2f
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II–1. Two particles of equal masses m1 = m2 move on a frictionless horizontal surface
in the vicinity of a fixed force center, with potential energies U1 = 1

2
kr2

1 and
U2 = 1

2
kr2

2. In addition, they interact with each other via a potential energy
U12 = 1

2
αkr2, where r = |~r1 − ~r2| is the distance between them and α and k

are positive constants.

(a) Find the Lagrangian in terms of the center of mass position ~R and the
relative position ~r = ~r1 − ~r2.

(b) Write down and solve the Lagrange equations for the center of mass co-

ordinates ~R = (X, Y ) and relative coordinates ~r = (x, y). Describe the
motion.

II–2. (a) In a beam of classical non-relativistic particles of mass m, each particle
initially moves parallel to the z-axis with velocity v. At a certain plane,
perpendicular to the z-axis, each particle experiences a transverse impulse
−brT , which is proportional to transverse distance rT from the z-axis with
coefficient −b. Show that the particles converge to a point on the z-axis,
called a focal point of the system. Find the distance f of the focal point
from the plane where the impulse happens. Assume that the z-width of
the region of the impulse is negligible compared with f .

[The approximation can be termed a thin lens approximation. It can be
shown that this system acting on particles behaves exactly like a lens acting
on rays of light, and that f is the focal length.]

(b) A quadrupole magnet is placed in a beam of momentum=200 MeV/c pro-
tons traveling in the z-direction near the z axis. The quadrupole magnet
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is 1 meter long (in the z direction) and, near the beam axis, the magnetic
field is approximately given by

B(x, y, z) = Kyx +Kxy,

where K = 0.1 T/m.

(i) Describe in words the effect this magnet has on the beam of protons.

(ii) Determine the focal length of this lens-like system in both the x-z
and y-z plane. (Use the non-relativistic and the thin-lens approxima-
tions.)

In solving this problem, include a brief assessment of the approximations
used.

II–3. Consider a single quantum mechanical particle of mass m in a one-dimensional
infinite square well of length `.

(a) Determine the energy eigenvalues and eigenfunctions of the system.

Now consider two (non-interacting) particles of mass m with spin in the same
infinite square well. They are in the same spin state.

(b) What is the wavefunction for the ground state and what is the value of
the energy for the ground state if the particles are identical bosons?

(c) What is the wavefunction for the first excited state and what is the value
of the energy for this state?

(d) Suppose the particles are identical fermions. What is the value of the
ground state energy and the wave function corresponding to this state?

(e) What is the value of the energy for the first excited state in the fermion
case?
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II–4. The vibrational energy levels of a molecule in a gas at temperature T are
often described by the harmonic oscillator spectrum, En = h̄ωn, where n =
0, 1, 2, . . .. (We ignore the zero-point energy).

(a) Suppose that the system consists of N molecules whose vibrational levels
fit the preceding description. Evaluate the fraction fn of these molecules
which have vibrational quantum number n.

(b) Determine the mean vibrational energy 〈E〉 of a molecule.

(c) Consider a system consisting of exactly N = 3 molecules, which share a
total vibrational energy Etotal = 3h̄ω. Evaluate the entropy of this system,
assuming that the molecules are distinguishable.
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I-1

When on the brink of skipping the obstacle, the normal force from the ground is zero. Writing the torque equilibrium
condition around the obstacle corner, we have

T (a+ r − h) =Mgr ⇒ T =
Mgr

a+ r − h

The friction should support this force on the tip of the obstacle

µ ≥
∣∣∣ tan

[
arctan

(
r + a− h

r

)
− arcsin

(
1− h

r

)] ∣∣∣

I-2

The magnetic force on a piece of the current carrying conductor is

F = (qivi)×B = ∆V J×B = ∆l I×B

Specifically, in our case:
F = 1.6N n̂

Where n̂ is a horizontal direction normal to the conductor. Incidentally, this is similar to the weight force on the
conductor, therefore, the tilt angle is α ≈ π/4.

I-3

a) From normalization: A = 1
5

b)

ρ(x) =
e−x2/x2

0

25
√
πx0

∣∣∣∣∣3 +
4
√
2x

x0
e−iωt

∣∣∣∣∣

2

=
e−x2/x2

0

25
√
πx0

(
9 +

32x2

x20
+

24
√
2x

x0
cosωt

)

c)

⟨ψ(t)|x |ψ(t)⟩ = 1

25
(9 ⟨ψ0|x |ψ0⟩+ 16 ⟨ψ1|x |ψ1⟩+ 24 ⟨ψ0|x |ψ1⟩ cosωt) =

24x0

25
√
2
cosωt

d) It will be 1
2ℏω with probability 9/25, and 3

2ℏω w.p. 16/25.

I-4

a) Since the piston is in the middle, the right hand side has 1/4 mole Hellium gas. In the final position, the volume in
each part is proportional to the mole number: the piston will be 80cm from the left end and 20cm from the right end.

b) Assuming that the gasses behave ideally, the change in their energy content is zero (no temperature change).
The net external work is also zero, meaning there is no heat exchange.
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II-1

a)

L =
1

2
m

(
2Ṙ2 +

1

2
ṙ2
)
− 1

2
k

[
2R2 + (

1

2
+ α)r2

]

b)

R̈+
k

m
R = 0 ⇒ R = A cos(ωt) +B sin(ωt)

r̈+
k

m
(2α+ 1)r = 0 ⇒ r = C cos

(
ω
√
2α+ 1t

)
+D sin

(
ω
√
2α+ 1t

)

In general, the motion consists of an elliptic orbit moving around another elliptic orbit.

II-2

a)

f = v × rT
brT /m

=
mv

b

b) The non-relativistic approximation holds best when p/mc ≪ 1, in this case: p/mc ≈ 0.21. The equations of
motion are

ẍ = −Ke
m
żx ; ÿ =

Ke

m
ży ; z̈ =

Ke

m
(xẋ− yẏ)

If the velocity ż does not change much in the magnetic region, then this is similar to the lens problem we had

bx = Keż
ℓ

ż
⇒ fx =

mvz
Keℓ

≈ 7m

by = −Keż ℓ
ż

⇒ fy = −mvz
Keℓ

≈ −7m

Hwew ℓ is the length of the magnetic region (ℓ = 1m). The relative change in the z velocity is easily found as

∆vz
vz

=
Ke

2mvz
|∆(x2 − y2)| ≲ 1

2

(
Keℓr

mvz

)2

=
1

2
(
r

f
)2

Therefore, the lens approximation is good when the beam width is much smaller than the focal length of about 7m.

II-3

a)

En =
ℏ2n2π2

2mℓ2
; ψn(x) =

√
2

ℓ
sin

nπx

ℓ

b)

|ψg,B⟩ = |1⟩ ⊗ |1⟩ ; Eg =
ℏ2π2

mℓ2

c)

|ψe,B⟩ =
1√
2
(|1⟩ ⊗ |2⟩+ |2⟩ ⊗ |1⟩) ; Ee,B =

5π2ℏ2

2mℓ2
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d)

|ψg,F ⟩ =
1√
2
(|1⟩ ⊗ |2⟩ − |2⟩ ⊗ |1⟩) ; Eg,F =

5π2ℏ2

2mℓ2

e)

|ψe,F ⟩ =
1√
2
(|1⟩ ⊗ |3⟩ − |3⟩ ⊗ |1⟩) ; Ee,F =

5π2ℏ2

mℓ2

II-4

a)

fn =
e−nβℏω

1− e−βℏω

b)

⟨E⟩ = ℏωeβℏω

(eβℏω − 1)2

c)

Ω = |{(3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 2, 1), (0, 1, 2), (1, 1, 1)}| = 10

⇒ S = kB log(10)
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