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Qualifying Exam for Candidacy

Department of Physics

February 1, 2014

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:
∫ ∞

0
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2
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∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (I–2)

Transformation of Lorentz 4-vector (e.g., (ct,x)) under boost by velocity v in z
direction: 
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Laplacian in spherical polar coordinates (r, θ, φ):
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Laplacian in cylindrical coordinates (r, θ, z):
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I–1. A block of triangular cross section and of mass m1 is placed on a horizontal
surface. On a diagonal face of the first block is placed another block, of mass
m2. This face is at an angle of α above the horizontal. The coefficients of
dynamical friction on the top surface is µ, while the bottom surface is friction-
less. Initially the blocks are held stationary, and at one particular time they
are released. The conditions are such that there is sliding at both surfaces.
Find the acceleration (including direction) of the first block (in terms of the
masses, µ and the gravitational acceleration g).

m
1

m
2

α

I–2. A thick spherical shell (inner radius a, outer b) is made of dielectric material
with a frozen-in polarization

P =
k

r
r̂, (I–6)

where k is a constant, r is the distance from the center (there is no free charge),
and r̂ is the unit vector in the radial direction. Find the electric field every-
where.
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I–3. Consider a two-state system with two observables, A and B each taking two
values, a1 and a2 and b1 and b2, respectively. When A takes value ai the
normalized wave function of the system is |ψi〉 while when B takes the value bi
the normalized wave function of the system is |φi〉. These wave functions are
related to each other by

|ψ1〉 =
3

5
|φ1〉+

4

5
|φ2〉, |ψ2〉 =

4

5
|φ1〉 −

3

5
|φ2〉. (I–7)

(a) The observable A is measured and the value a1 is obtained. What is the
state of the system (immediately) after this measurement?

(b) If B is now measured, what are the possible results, and what are their
probabilities?

(c) Right after the measurement of B, A is measured again. What is the
probability of getting a1? (Note that the outcome of the B measurement
is not specified.)

I–4. A spherical black body of radius R1 is maintained at a constant absolute tem-
perature T by internal processes. It is surrounded by a thin spherical and
concentric shell of radius R2, black on both sides. The exterior temperature is
T0.

(a) Find the equilibrium temperature of the outer spherical shell.

(b) Find the ratio between the rate of energy loss in the presence and in the
absence of the outer shell.
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Qualifying Exam for Candidacy

Department of Physics

February 1, 2014

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:
∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Transformation of Lorentz 4-vector (e.g., (ct,x)) under boost by velocity v in z
direction: 


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Laplacian in spherical polar coordinates (r, θ, φ):
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(
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. (II–4)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
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∂r

)
+
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r2
∂2f

∂θ2
+
∂2f
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. (II–5)

II–1. Two protons of equal mass mp = 0.938 GeV/c2 and equal energy E0 = 100 GeV
collide elastically. Denote the initial energies by Ei1 and Ei2, and the initial
3-momenta by pi1 and pi2. After the collision, the energies and 3-momenta are
Ef1, Ef2, pf1 and pf2. The energies and momenta are given by

Ei1 = 100 GeV, pi1 = p0ẑ, (II–6a)

Ei2 = 100 GeV, pi2 = −p0ẑ, (II–6b)

Ef1 = 100 GeV, pf1 = p0(x̂ sin θ + ẑ cos θ), (II–6c)

Ef2 = 100 GeV, pf2 = −p0(x̂ sin θ + ẑ cos θ). (II–6d)

Assume the scattering angle θ is .01 radians.

(a) Determine p0 in units of GeV/c and determine γ = 1/
√

1− β2 for the
boost from the rest-frame of the proton. Here β = v/c, with v being the
speed of one proton in the center-of-mass reference frame.

(b) The same collision process is now observed in a reference frame where the
target proton (2) is at rest before the collision. This is a frame boosted
along the z axis from the original frame. What will the momenta of the
two protons be after collision? Give x and z components for both final
state protons.

(This is the transformation that describes a result from a collider experi-
ment as seen in the frame common for fixed target experiments)
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II–2. A planar circuit surrounds a solenoid and consists of two capacitors of capac-
itances C1 and C2 joined together by normal wires. The solenoid crosses the
plane of the circuit in a patch of area A, and it produces a time-dependent
magnetic field that is changing linearly with time: B(t) = B0 + Ḃt; the pos-
itive direction is coming up out of the paper. The field is uniform inside the
solenoid, and the return path for the flux is well outside the region shown on
the picture, and the magnetic field outside the solenoid is to be neglected.

Before the field is applied the capacitors have zero charge. In equilibrium what
are the charges Q1 and Q2 on the capacitors. Determine the signs.

C1 C2B(t)

II–3. A quantum mechanical particle of mass m in one dimension has the following
square well potential energy:

V (x) =

{
0 if |x| ≤ a,

V0 if |x| > a.
(II–7)

Derive an equation whose solution gives the energy eigenvalue(s) for antisym-
metric wave functions: φ(−x) = −φ(x).

II–4. In 1906, J. B. Perrin started a series of experiments to determine Avogadro’s
number, for which he was awarded the Nobel Prize in Physics in 1926. In those
experiments, he used a microscope to measure the change in concentration of
little spherical particles in water with the distance from the bottom of the
container. The density of those particles (which he obtained from the resin
called gamboge) was ρ = 1.21 × 103 kg/m3 and their volume V = 1.03 ×
10−19 m3, while the density of water is ρW = 1.00×103 kg/m3. The experiment
was done at a temperature T = 4 °C. Determine the distance from the bottom
of the container at which the concentration of those particles halved.
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I-1

Writing the second law for the first block, we get

m1a1 = N(sinα− µ cosα)

But, (best seen while moving with the first block)

N = m2(g cosα− a1 sinα)

Therefore
m1a1 = m2(g cosα− a1 sinα)(sinα− µ cosα)

leading to

a1 =
m2g cosα (sinα− µ cosα)

m1 +m2 sinα (sinα− µ cosα)

I-2

The electric displacement field
∇ ·D ≡ ε0E+P

Spherical symmetry limits this to D = C r̂/r2, but there is no charge in the center to cause the singularity, so we
have C = 0, and hence

E = − 1

ε0
P =

−kr̂
ε0r

× 1[a < r < b]

I-3

a) It is |ψ1⟩.

b) The result will be b1 with probability 9/25, and b2 with probability 16/25.

c) the probability of getting a1 is

P1 = | ⟨ψ1|ϕ1⟩ |4 + | ⟨ψ2|ϕ2⟩ |4 =
81 + 256

625
=

337

625

and therefore

P2 =
288

625

II-1

a)
γ = E/m ≈ 106.6

p0 =
√
(E/c)2 −m2

pc
2 ≈ 99.9956GeV/c

8



b) Defining E0 = 100GeV , in the CM frame we have

Pµ
i1 = (E0/c, 0, 0, p0) ; Pµ

i2 = (E0, 0, 0,−p0)
Pµ
f1 = (E0/c, p0 sin θ, 0, p0 cos θ) ; Pµ

f2 = (E0/c,−p0 sin θ, 0,−p0 cos θ)
The Lorentz transformation to the frame where the second proton is initially at rest, is

Λ =




γ 0 0 γβ
0 1 0 0
0 0 1 0
γβ 0 0 γ




with β = p0c/E0. Giving

P̄µ
i1 ≈ (21321, 0, 0, 21321)GeV/c ; P̄µ

i2 = (0.938, 0, 0, 0)GeV/c

P̄µ
f1 = (21320, 1, 0, 21320)GeV/c ; P̄µ

f2 = (1.471,−1, 0, 0.533)GeV/c

II-2

In equilibrium, there is no current, and therefore no electric field in the wires. Charge conservation reads

C1V1 = C2V2

while the Faraday’s law amounts to
V1 + V2 = −ḂA

These are simultaneously solved as

V1 =
−ḂAC1

C1 + C2
; V2 =

−ḂAC2

C1 + C2

the polarization is as follows: for C1, the upper plane is positive and for C2, the lower plane is positive.

II-3

All these solutions start as
ψ(x) = sin(kx)

and then are sewed to
ψ(x) = Ae−κx

with

k =

√
2mE

ℏ
; κ =

√
2m(V0 − E)

ℏ
The continuity equations are

sin(ka) = Ae−κa ; k cos(ka) = −κAe−κa

summarised as
−κ = k cot(ka)

II-4

The concentration goes like

exp

(
−meffgh

kBT

)
= exp

[
−NAV (ρ− ρw)gh

RT

]

Therefore

H1/2 =
RT log(2)

NAV (ρ− ρw)g
≈ 12.5µm
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