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Qualifying Exam for Ph.D. Candidacy

Department of Physics

October 17th, 2015

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (I–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (I–2)

I–1. A crude approximation of the CO2 molecule by a classical system is depicted in
the figure. It consists of masses m1 = 16 and m2 = 12 (in some units) connected
by identical springs as in the figure below; their motion is one-dimensional.

(i) Determine the ratio between the frequencies of the normal vibrational
modes.

(ii) Describe the motion of the carbon and oxygen atoms in each vibrational
mode.

k k
m1 m1m2

I–2. A particle of mass m moving in one dimension is confined to the region 0 <
x < L of zero potential energy by an infinite well potential. In addition, the
particle experiences a delta function potential

V (x) = λδ(x− L

2
) ,

where λ is a positive real parameter. Find the equations for the energy eigen-
values E of the particle in terms of the mass m, and the parameters λ and L.

I–3. An ideal monoatomic gas is enclosed in a cylinder of radius a and length L.
The cylinder rotates with angular velocity ω about its symmetry axis and the
ideal gas is in equilibrium at temperature T in the coordinate system rotating
with the cylinder. Assume that the atoms of gas obey classical statistics, each
of them has mass m and has no internal degrees of freedom.

(i) What is the Hamiltonian in the rotating coordinate system?

(ii) What is the partition function for the system?

(iii) What is the average number density as a function of r, the distance from
the rotation axis?
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I–4. Two very long concentric conducting cylindrical shells are located at radius r1
and r2 from an axis. The length of the cylinders is L . Between the cylinders is
a medium with dielectric constant κ = ε/ε0. Determine the polarization field
in the dielectric medium if the electric potential difference between inner and
outer cylinders is V0 . Determine the expression for the free charge on the inner
conductor.
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Qualifying Exam for Ph.D. Candidacy

Department of Physics

October 17th, 2015

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

II–1. A rocket car releases the combustion gas at a speed v with respect to itself and
the mass of the combustion gas released per unit time is µ. Assume that the
car is initially at rest.

(i) What is the speed of the car after its mass (the joint mass of the structure
of the car and the fuel) has decreased n times.

(ii) What is the minimal time required for a car whose structure mass is m
to reach the speed of sound vs.

II–2. (i) Consider a simple one-dimensional quantum mechanical harmonic oscilla-
tor of mass m and frequency ω. Starting from the Hamiltonian operator
H0 in terms of the coordinate and momentum operators x and p,

H0 =
P 2

2m
+ V0 with V0 =

mω2x2

2
,

express it in terms of creation and annihilation operators. Find its nor-
malized eigenvectors in terms of creation operators and the eigenvalues.

(ii) The anharmonic term V1(x) = Kx4 is added to the Hamiltonian H0. As-
suming that V1 is a small perturbation, calculate the first order correction
to the energy levels (i.e. the expectation values 〈ψn|V1(x)|ψn〉 where |ψn〉
are the eigenstates of H0).

II–3. (i) Find the efficiency of a reversible engine operating around the cycle in
figure II–1(a). T is the temperature inK and S is the entropy in Joules/K.

(ii) What is the efficiently of the reversible engine operating around the cycle
in figure II–1(b)? Is it larger or smaller than the efficiency of an engine
operating around the cycle in figure II–1(a)?

II–4. Consider the two circuits shown in the figure II–2. Circuit #1 is a toroidal coil
with an inner radius a, an outer radius b, a height c, and wound with N total
turns. The toroid is coaxial with one segment of a flat rectangular circuit loop
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Figure II–1: Thermodynamic cycles

(circuit #2) which lies along the z-axis. The rectangular loop has a height h
and a width w. The figure to the right of fig. II–2 shows a cross sectional view
in the plane of the rectangular circuit (circuit #2).

(i) Find the mutual inductance M between the two circuits.

(ii) If a time-varying current I2 = kt, flows in the rectangular loop, what is
the electro-motive force (EMF) induced in the toroid?

Figure II–2: Circuits
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I-1

Let’s work in the units where k = 16 as well. The equations of motion are

d2

dt2



x1
x2
x3


+



+1 −1 0
− 4

3
8
3 − 4

3
0 −1 +1





x1
x2
x3


 = 0

There are 3 modes, the first one is a translational mode: all of the masses move with constant velocity with
ω = 0.

x = (1, 1, 1)T ; ω = 0

Then, there is the oscillation in which the Carbon is still and the Oxygen atoms oscillate

x = (+1, 0,−1)T ; ω = 1

The next mode has shorter wavelength in that the signs oscillate.

x = (3,−8, 3)T ; ω2 =
11

3

I-2

The even number states are not ffected by the delta function

En =
n2π2ℏ2

2mL2
; ψn =

√
2

L
sin

nπx

L
n = 2, 4, 6, · · ·

As for the odd numbers, the states start with sin(kx) on each side, then they have to meet the (dis)continuity
condition

k cos

(
kL

2

)
=
mλ

ℏ2
sin

(
kL

2

)

Defining

χ = kL/2 ; α =
mLλ

2ℏ2

this equation reads

tanχ =
χ

α

Then the energies are

En =
2ℏ2χ2

n

mL2
; ψn =

√
2

L

[
1− sin(2χn)

2χn

]−1

sin

(
2χnx

L

)
n = 1, 3, 5, · · ·

As λ (and therefore α) grows from zero to infinity, the χn move from

χn(α = 0) = n
π

2
; n = 1, 3, 5, · · ·

to
χn(α = ∞) = nπ ; n = 1, 3, 5, · · ·
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I-3

i)

H =
1

2m
(p2r + p2z) +

(pφ + ωmr2)2

2mr2
− 1

2
mω2r2

ii) The single particle partition function is

Z =

∫ ∏

i

(
dqidpi
h

) exp(−βH) =
2πL

h3

∫
drdprdpz exp

[
−β
(
p2r + p2z
2m

− 1

2
mω2r2

)]∫
dpφ exp

[−β(pφ + ωmr2)2

2mr2

]

=
2πL

h3

(
2πm

β

)3/2 ∫ a

0

dr r exp

(
1

2
βmω2r2

)

=
2πL

h3

(
2πm

β

)3/2
1

βmω2

(
e

1
2βmω2a2 − 1

)

iii) The probability distribution in r is proportional to r exp
(
1
2βmω

2r2
)
. The pre-factor ′r′ is from the circular

geometry of uni-radii volume elements. Therefore, the number density is

n =
βmω2Ne

1
2βmω2r2

2πL(e
1
2βmω2a2 − 1)

I-4

In the bulk, ∇ ·E = 0 due to homogeneity and ∇ ·D = 0. Therefore

E =
V0

log(r2/r1)

r̂

r

P = (ε− ε0)E =
(ε− ε0)V0
log(r2/r1)

r̂

r

D = εE =
εV0

log(r2/r1)

r̂

r

∇ ·D = ρf ⇒ σf =
εV0

r1 log(r2/r1)

II-1

i) The equation is
d[M(t)u(t)] = vµdt

Therefore
u = (n− 1)v

ii) The necessary n is vs/v + 1 which means the necessary fuel mass is mvs/v. Finally, the necessary time is

T =
mvs
vµ
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II-2

i)

a ≡ 1

2

(
X√
ℏ/ωm

+
iP√
ωmℏ

)

Then

H0 = ℏω(a†a+
1

2
)

with

En = ℏω(n+
1

2
) ; |n⟩ = a†n√

n!
|0⟩

ii)

δE(1)
n = K ⟨n|X4 |n⟩ = Kℏ2

4ω2m2
⟨n| (a+ a†)4 |n⟩

=
Kℏ2

4ω2m2
⟨n| aaa†a† + aa†aa† + aa†a†a+ a†a†aa+ a†aa†a+ a†aaa† |n⟩

=
Kℏ2

4ω2m2
⟨n| a(1 + a†a)a† + (1 +N)2 + (1 +N)N + a†(aa† − 1)a+N2 +N(N + 1) |n⟩

=
3Kℏ2

4ω2m2
(2n2 + 2n+ 1)

II-3

i)

ηa = 1− QC

QH
= 1− 300∆S

400∆S
= 25%

ii)

ηb = 1− QC

QH
= 1−

[
1

300× 500

∫ 1

0

500dλ(400− 100λ)

]−1

=
1

7
< 25%

Of course, the first cycle was the Carnot cycle.

II-4

i) When a current I is running in the first circuit, we know that from symmetry considerations, inside and outside
of the coil we have

B =
α

s
φ̂

Inside, this blows up and therefore, B = 0. Inside, we can find the constant using Ampere’s law. This gives

B =
µ0NI

2πs
φ̂

Therefore

Φ2 =MI =
µ0Nc

2π
log(b/a)I

leading to

M =
µ0Nc

2π
log(b/a)
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ii)

E =
µ0Nck

2π
log(b/a)
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