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Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 7, 2015

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞
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∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (I–2)
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Laplacian in cylindrical coordinates (r, θ, z):
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I–1. Consider two pendula of equal length b and equal masses m connected by a
spring of force constant κ. The suspension points are separated by a horizontal
distance D as shown. Assume that the spring is of negligible mass and that
it is rigid enough that it remains straight and does not buckle or significantly
sag. The spring is unstretched in the equilibrium position.

(a) Obtain the Lagrangian for the system and determine the equations of
motion.

(b) Determine the normal modes and their angular frequencies for small os-
cillations from equilibrium.
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I–2. A circularly polarized electromagnetic wave in vacuum, moving in the x-direction,
has the electric field

~E(~r, t) = E0Re
(
eik(x−ct)(~ey − i~ez)

)
.

(The vectors ~ey and ~ez have unit length and point in the y and z-direction,
respectively.)

(a) Compute the magnetic field ~B(~r, t) and the Poynting vector ~S(~r, t) of the
wave.

(b) The wave, coming from the negative x direction, encounters an ideal metal
plate at x = 0. Compute the electric and magnetic fields of the reflected
wave.

(c) What is the Poynting vector of the complete electromagnetic field con-
taining the incident wave and the reflected wave?

I–3. A quantum mechanical particle of mass m is constrained to move between two
concentric impenetrable shells of radii r = a and r = b . There is no other
potential. Find the ground state energy and normalized wave-function.

I–4. A system is composed of a large number N of distinguishable atoms at rest,
and mutually noninteracting. Each atom has two possible energy states: (i)
zero, and (ii) ε > 0. Denote E as the total energy of the system.

(a) What is the average value of E/N when the system is in thermal equilib-
rium at temperature T?

(b) What is the entropy S when the system is in thermal equilibrium at
temperature T?
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Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 7, 2015

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2
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2
. (II–1)

∫ ∞

0
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Laplacian in spherical polar coordinates (r, θ, φ):
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Laplacian in cylindrical coordinates (r, θ, z):
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II–1. A spherical shell of negligible thickness and radius R has two holes of radius
r1 and r2 centered about opposite sides of the same diagonal (cuts created by
two parallel planes). The shell is initially at rest. An object with the same
mass as the shell explodes in the center. Assuming that the distribution of the
very tiny fragments that result from the explosion is spherically symmetric,
that those fragments have speed v, and that all the fragments that hit the shell
stick to it, determine the velocity of the sphere long time after the explosion.

II–2. (a) Derive a formula for the electrostatic energy in a capacitor of capacitance
C when the potential difference across its terminals is V .

(b) A variable capacitor is attached to a source of constant emf E as shown.
The capacitance is varied as a function of time such that the current I in
the circuit is constant. Initially, the capacitance is C0. Neglecting internal
resistance, compute the power supplied by the emf as a function of time.
Compare it with the rate of change of the energy stored in the capacitor,
and account for any difference.
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II–3. A quantum system is described by a 3-dimensional Hilbert space with orthonor-
mal basis (|1〉, |2〉, |3〉). In this basis, the Hamiltonian Ĥ is given by the matrix

Ĥ = ε




4 3 0
3 −4 0
0 0 −2




with some constant ε > 0 with the units of energy. At time t = 0, the system
is in the state |ψ(0)〉 = 2−1/2(|1〉+ |3〉).

(a) Compute |ψ(t)〉 for t > 0.

(b) What is the probability that the system is in state |2〉 at time t?

(c) What is the probability that the system is in the ground state at time t?

II–4. A thermally isolated cylindrical container is divided in two parts by a thermally
isolating piston that can move freely. Initially, the piston is in its equilibrium
position with ν moles of a classical ideal monoatomic gas on each side, with
temperatures T1 and T2 (see figure). If the piston is removed (assume its volume
is negligible compared to the volume of the recipient):

(a) Find the pressure and temperature after the gas comes to equilibrium, the
pressure being in terms of the initial pressure P0.

(b) Compute the change in entropy of the system (after equilibrium is reached).

(c) From your result in (b), discuss whether the entropy decreases, increases,
or remains unchanged.

T2T
1

νν
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I-1

a)

L =
1

2
mb2(θ̇21 + θ̇22)−

1

2
mgb(θ21 + θ22)−

1

2
κb2(θ1 − θ2)

2
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θ̈1
θ̈2

)
+

(
g/b+ κ/m −κ/m
−κ/m g/b+ κ/m

)(
θ1
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)
= 0
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ω2
± =

g

b
+
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2

(
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∓1

)

I-2

a) From k.B = 0 and ik×B = iωE we find

B =
E0

c
Re

[
eik(x−ct)(iŷ + ẑ)

]

S =
E2

0

µ0c
x̂

b)

Er = E0 Re
[
e−ik(x+ct)(−ŷ + iẑ)

]

Br =
E0

c
Re

[
e−ik(x+ct)(iŷ + ẑ)

]

c)
Etot. = 2E0 sin(kx) [sin(ωt)ŷ + cos(ωt)ẑ]

Btot. =
2E0

c
cos(kx) [sin(ωt)ŷ + cos(ωt)ẑ]

S = 0

I-3

In the ground state, the angular momentum is zero. Therefore ψ = ψ(r) and satisfies

−1

r2
d

dr
r2ψ′(r) = k2ψ(r)

with ψ = χ(r)/r this becomes
χ′′(r) = −k2χ(r)

The ground state corresponds to

χ(r) = A sin

[
π(r − a)

b− a

]
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To normalize, we have
1

A2
= 4π

∫ b

a

dr sin2
[
π(r − a)

b− a

]
= 2π(b− a)

Hence

ψ =
1√

2π(b− a)r
sin

[
π(r − a)

b− a

]

I-4

a)
⟨E⟩
N

=
ε

eβε + 1

b)

S = NkB

{
log

(
1 + eβε

)

eβε + 1
+

log
(
1 + e−βε

)

e−βε + 1

}

= NkB

[
log

(
1 + eβε

)
− βε

1 + e−βε

]

II-1

The final velocity is
v

4R2
|r21 − r22|

in the direction of the smaller hole.

II-2

a)

U =
1

2
CV 2

b) A KVL shows that the potential across the capacitor is equal to the emf E. Therefore the charge is Q(t) =
C(t)E. In order to keep the current constant, the capacitance should increase linearly with time

C(t) = C0 + αt

In this case, the energy content of the capacitor is

U(t) =
1

2
(C0 + αt)E2

While the emf power is
P = EQ̇ = E2α = 2U̇

Half of the energy provided by the battery is wasted during the charging process in the wire. Considering a very
small resistance for the wire and re-doing the calculations confirms this.
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II-3

a, b, c) The system consists of a state with energy E3 = −2ε and two states with energies E± = ±5ε:

|+⟩ = 1√
10

(3 |1⟩+ |2⟩) ; |−⟩ = 1√
10

(|1⟩ − 3 |2⟩) ; |3⟩ = |3⟩

The initial state is

|ψ(0)⟩ = 1√
20

(3 |+⟩+ |−⟩+
√
10 |3⟩)

From here, we already have the answer to part (c)

P− =
1

20

We can evolve the state to find

|ψ(t)⟩ = 1√
20

(
3e−5iεt/ℏ |+⟩+ e5iεt/ℏ |−⟩+

√
10e2iεt/ℏ |3⟩

)

=
1√
2

[(
0.9e−5iεt/ℏ + 0.1e5iεt/ℏ

)
|1⟩ − 0.6i sin

(
5εt

ℏ

)
|2⟩+ e2iεt/ℏ |3⟩

]

The probability of finding the system in state |2⟩ is

P2 = 0.18 sin2
(
5εt

ℏ

)

II-4

a) For mono-atomic ideal gasses, the energy is proportional to temperature. Therefore, the final gas has temperature

Tf =
1

2
(T1 + T2)

As for the pressure

pf =
2νRTf
V

=
νR(T1 + T2)

T1+T2

T1
V1

=
νRT1
νRT1

p0 = p0

b, c)

dS =
1

S
(dE + pdV ) =

3

2
νR

dT

T
+ νR

dV

V
⇒ ∆S = νR

(
3

2
∆ log(T ) + ∆ log(V )

)

For our specific case, this becomes

∆S = 5νR log

(
(T1 + T2)/2√

T1T2

)
> 0

The entropy increases (Of course!)
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