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Qualifying Exam for Ph.D. Candidacy

Department of Physics

October 1st, 2016

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0
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2
. (I–1)

∫ ∞

0
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Laplacian in spherical polar coordinates (r, θ, φ):
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Laplacian in cylindrical coordinates (r, θ, z):
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1
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(
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∂θ2
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I–1. A particle with mass m and electric charge e is moving in a two-dimensional
plane under the influence of a constant uniform magnetic field pointing in the
z-direction, ~B = (0, 0, B), and an inverted harmonic oscillator potential,

V (x, y) = −1

2
mω2(x2 + y2) .

(i) Write the equations of motion.

(ii) Find the minimal value of the magnetic field for which the particle exhibits
stable motion around the point x = 0 = y.

I–2. Consider a particle of mass m moving in a three-dimensional spherical well
potential of radius R

V (|~r|) =

{
−V0 0 ≤ |~r| ≤ R

0 R < |~r|

with V0 > 0. Show that for a well of fixed radius R, a bound state exists only
if the depth of the well has at least a certain minimum value. Calculate that
minimum value.
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I–3. Consider a parallel plate capacitor, with rectangular plates of dimensions L
and y. The distance between the plates is d. The potential on the plates is
kept constant by the battery with voltage V . The rectangular shaped dielec-
tric with dielectric constant εr = ε/ε0 > 1 is partially inserted in between the
plates (it is distance x inside the capacitor in the direction L, see Fig.I–3).
Find the capacitance of this system. What is the infinitesimal change in the
energy of the capacitor at constant voltage when dielectric is infinitesimally
displaced? What is the magnitude and the direction of the force acting on the
dielectric?

ǫ = ǫrǫ0

y

d

L

x

V

I–4. Half a liter of water is warmed up in a 10-inch pan (that is, a wide pan with a
radius of r = 12.7cm). The pan stands on a stove-top burner which has been
set at low heat (T0 = 95◦C). Before the heat was turned on, the water had the
temperature T = T0−∆T with ∆T = 20◦C. Assume that in this situation heat
transfer happens mainly by conduction rather than convection. The vertical
temperature profile u(t, z) = T (t, z) − T0 is then described well by the heat
equation ∂u/∂t = k∂2u/∂z2 with k = 0.14 · 10−6m2/s. Notice the similarity
with the 1-dimensional time-dependent Schrödinger equation.

(i) Compute the height h of the water column.

(ii) The boundary conditions for the vertical temperature profile are u(t, 0) =
0 and uz(t, h) = 0 for all t, with uz(t, z) = ∂u(t, z)/∂z. What is the
equilibrium distribution of u(t, z)?

(iii) Soon after the heat is turned on, the vertical temperature profile is given
by u(0, z) = −∆T sin(1

2
πz/h) for 0 ≤ z ≤ h. Estimate the time it takes

for the temperature to approach equilibrium after t = 0.

(iv) What is the minimum amount of heat required to reach equilibrium?
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Qualifying Exam for Ph.D. Candidacy

Department of Physics

October 1st, 2016

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Laplacian in spherical polar coordinates (r, θ, φ):

∇2f =
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. (II–3)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1
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(
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)
+
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+
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II–1. A spider is hanging by a silk thread on the mast of a ship in New York Harbor.

(i) Find the orientation and the value of the equilibrium angle the thread
makes with the vertical (i.e. the direction of gravity), taking into account
the rotation of the Earth. Assume that New York Harbor is at latitude θ
and that the Earth radius is RE.

(ii) Assume that the ship sets sail East with constant velocity v tangential to
the surface of the Earth and stays at latitude θ. Find the new orientation
and the new value of the equilibrium angle the thread makes with the
vertical.

II–2. A proton and an electron are in the combined state

χ =
1√
6

(2 |1/2, 1/2〉|1/2, 1/2〉+ |1/2, 1/2〉|1/2,−1/2〉 − |1/2,−1/2〉|1/2, 1/2〉)

(i) What are the probabilities of the possible outcomes of measurements of

the z-component of the first spin, Ŝ
(1)
z ?

(ii) What are the probabilities of the possible outcomes of measurements of

the z-component of the total spin, Ŝz = Ŝ
(1)
z + Ŝ

(2)
z ?

(iii) What are the eigenvalues of the scalar product ~̂S(1) · ~̂S(2) of the individual
spins? What are their multiplicities?

(iv) Is it possible for a pair of electrons to be in the state χ?
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II–3. A positively charged ion (with charge +qe) and a neutral atom are separated
by a distance r. The neutral atom has an isotropic polarizability α, such that
the atom develops a dipole moment p = αEl in the presence of a local electric
El. Derive an expression for the force between the ion and the neutral atom.
Is the force attractive or repulsive?

II–4. A box contains hydrogen atoms in thermal equilibrium at 300 K. Ignoring
perturbative effects, the energy of the hydrogen atom levels (labeled by n) is
given by the expression: En = −13.6eV/n2.

(i) Considering spin, determine the degeneracy of each level of one atom. Re-
member that the orbital angular momentum quantum number has values
l = 1, . . . , n− 1.

(ii) Write the expression for the ratio of the number of atoms in level n (n
not too large) to those in the ground state.

(iii) Compute this ratio for n = 2. What do you conclude from your result?

(iv) What is the limit of the expression you wrote for the ratio as n becomes
very large? Can it exceed 1? If so, under what condition(s)?

(v) Is it realistic that the number of atoms with high n could be greater than
the number with low n? If your answer is at odds with your result(s) in
(iv), identify the main physical reason for the discrepancy.
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I-1

i)

ẍ = ω2x+
eB

m
ẏ ; ÿ = −eB

m
ẋ+ ω2y ; z̈ = 0

ii) Assuming (
x

y

)
= est

(
X

Y

)

The equation becomes (
s2 − ω2 −eBs/m
+eBs/m s2 − ω2

)(
X

Y

)
= 0

The eigen-frequencies are

s = σ1
√
ω2 − (eB/2m)2 + σ2

ieB

2m
; σ1,2 ∈ {±1}

For stability, we need

B ≥ 2ωm

e

I-2

In general, the states for a spherically symmetric potential are in the form

ψ =
χnl(r)

r
Ylm(θ, φ)

The ground state ought to have l = 0.

χ′′
00(r)−

2mV (r)

ℏ2
χ00(r) = 0

The boundary condition at r = 0 and r = ∞ set the forms and we find the continuity conditions

sin(kR) = Ae−κR ; k cos(kR) = −κAe−κR

The solutions correspond to
kR cot(kR) = −κR

With x ≡ kR and using the definitions for k and κ in terms of the energy, we find

x cot(x) = −
√

2mV0R2

ℏ2
− x2

The inverted semi-circle on the RHS will cross the x cot(x) curve at least once with κ > 0 if and only if its radius
is larger than π/2.

V0 >
π2ℏ2

8mR2
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I-3

Ignoring the edge effects, the capacitance is the sum of those from two parallel capacitors

C(x) =
ε0y

d
(L− x+ εrx)

The energy is

E(x) =
1

2
CV 2 =

ε0y

2d
(L− x+ εrx)V

2

dE

dx
=
ε0y

2d
(εr − 1)V 2

The work done by the battery during an infinitesimal move dx is

dWB = V dQ = V 2dC =
ε0y

d
(εr − 1)V 2dx

From this, we find the work done by a hand/handle keeping the slab from accelerating is negative the change in
energy. Therefore

F =
ε0y

2d
(εr − 1)V 2

attractive.

I-4

Let V denote the volume of the water and r the radius of the pan.

i)

h =
V

πr2
≈ 9.87 mm

ii) In equilibrium: ∂2u/∂z2 = 0 therefore
ueq.(∞, z) = 0

iii) Separating the variables leads to the solution basis

sin [π(n+ 1/2)z/h] exp
[
−kπ2(n+ 1/2)2t/h2

]
; n = 0, 1, 2, 3, · · ·

iv) The temperature exponentially approaches equilibrium with time constant

τ0 =
4h2

π2k

v)
Q = ρV c∆T
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II-1

a, b) Assuming the ship is sailing with velocity v eastward, the acceleration (including the gravitational pull) is

a = −
(
Ω+

v

R cos θ

)2

R cos θ
(
cos θr̂+ sin θθ̂

)
+ gr

where Ω is the angular frequency of 1 revolution per day. Therefore, the tilt angle is towards the south and in
magnitude, it is

arctan

{
(Ω + v/R cos θ)2R cos θ sin θ

g − (Ω cos θ + v/R)2R

}
≈ R

g
(Ω +

v

R cos θ
)2 cos θ sin θ

II-2

Let’s first write the state in a shorter notation

|χ⟩ = 1√
6
(2 |00⟩+ |01⟩ − |10⟩)

i)

S(1)
z =





+1/2 w.p. 5/6

−1/2 w.p. 1/6

ii) S
(1+2)
z has all of the terms in |χ⟩ as its eigenstates. Therefore

S(1+2)
z =





+1 w.p. 2/3

0 w.p. 1/3

iii)

S(1).S(2) =
1

2

(
|S(1+2)|2 − |S(1)|2 − |S(2)|2

)
=

1

2

(
−3

2
+ |S(1+2)|2

)

=
−3

4
+

1

2
j(j + 1) =





− 3
4 w. mult. 1

+ 1
4 w. mult. 3

iv) No, because it’s not anti-symmetric (the first term is not).

II-3

F = αE.∇E = α
qe

4πε0r2
r̂.∇ qe

4πε0r2
r̂ =

−αq2e
8π2ε20r

5
r̂
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II-4

i)

Ωn =

n∑

l=0

2× (2l + 1) = 2n2

ii)

n2 exp

{−13.6 eV

kBT
(1− 1

n
)

}
≈ n2 exp

[
−526(1− 1

n
)

]

iii)
N2

N1
≈ e−394 ≪ 1

The conclusion is that most atoms are in their ground state.

iv) It will always go to infinity and passes unity when n exceeds about exp(|E1|/2kBT ≈ 263) ≫ 1.

v) It is at odds, for any positive temperature this predicts that no electron should be bounded to its nucleus.
However, the paradox is solved when we realise that the size of orbitals also grows like an = n2a0. Therefore,
the size of these extremely high n orbitals is so vast that they can not fit in the room/planet/universe as feasible
solutions to the Schrödinger equation.
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