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Qualifying Exam for Ph.D. Candidacy

Department of Physics

October 7th, 2017

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞
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Indefinite integrals:

∫
x

(x2 + a2)n
dx =

1

2(1− n)

1

(x2 + a2)n−1
+ c for n 6= 0, 1 (I–4)

I–1. A small object of mass m is moving under the influence of gravity without
friction inside a conical surface whose symmetry axis is vertical (see figure).
The half-angle at the tip of the cone is α. Gravity acts parallel to the symmetry
axis of the cone. Initially, the object was at height h and its velocity was
directed horizontally. In its subsequent motion the object descends to a height
h/2 and then starts climbing back.

a) Write the equations of motion

b) Find the speed of the object at the highest vupper and lowest vlower point
of its trajectory

I–2. Consider a particle of mass m in one dimension, subject to a double well delta-
function potential

V (x) = −gδ(x− a)− gδ(x+ a) .

This potential supports at least one bound state for all values of a. For what
values of a does this potential support at least two bound states?
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I–3. Two parallel conducting plates, P1 and P2, have area A and mass M . They are
separated by distance d and the plates are perpendicular to the ẑ axis. The
plate P1 is held at ground potential and the plate P2 is held at electric potential
VP2 relative to the ground with the use of a battery with internal resistance R.

The plates are large enough or d is small enough so we can assume that the
electric field does not depend upon the coordinates x and y spanning the area
covered by the plates. In this problem we will look at what happens when we
suddenly change the separation of the plates.

a) Determine the capacitance between the plates for separation d at time τ1
(just before the separation is changed).

Now change the separation from d to 2d during the time interval from τ1 to τ2.
Assume that the change is very rapid, so that no significant charge is provided
from the battery between times τ1 and τ2.

b) What is the instantaneous voltage across the plates and the instantaneous
current flowing into the battery at time τ2.

c) Find an expression for the voltage across the plates as a function of time
for times greater than τ2.

d) How much heat is dissipated in the internal resistor of the battery between
τ2 and a much later time τ3, as a function of VP2 , A and d?

I–4. Consider a heated sheet of aluminum of large area A and thickness L along the
x̂ axis. The heat flow flux ~K, defined as the vector power per area of the heat
flow, is proportional to the gradient of the temperature,

~K = Kxx̂+Kyŷ +Kz ẑ = −λ~∇T .

The heat equation for the temperature T (x, y, z, t) is similar to the Schrödinger’s
equation:

∇2T =
1

α

dT

dt
.

Assume that α and λ are constants. We will consider solutions of the heat
equation that determine the temperature over the x and t coordinates, T (x, t),
where the boundary conditions will be T (0, t) = 0 = T (L, t). (Here ”0” stands
for room temperature).

a) At t = 0 the sheet has an initial temperature distribution

T (x, 0) = T0

(
sin
(π
L
x
)

+
1

2
sin

(
2π

L
x

))
,

with T0 a positive temperature. Evaluate the heat flux Kx emerging from
the front and the back surfaces of the sheet (x = 0 and x = L) at time
t = 0 in terms of the constants introduced.
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b) Separating variables x and t and applying boundary conditions at the
surfaces, find the set of separated solutions to the heat equation (T (x, t)→
Qn(x)Wn(t)). Each index n corresponds to a different exponential cooling
rate. The general solution would be a superposition of these solutions,
with amplitudes An, T (x, t) =

∑
nAnQn(x)Wn(t).

c) Determine T (x, t), including the time dependence of the temperature dis-
tribution, given the initial conditions from part a).
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Qualifying Exam for Ph.D. Candidacy

Department of Physics

October 7th, 2017

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

∫ ∞

0

1

(x2 + a2)n
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Γ(n− 1

2
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2
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(II–3)

Indefinite integrals:

∫
x

(x2 + a2)n
dx =

1

2(1− n)

1

(x2 + a2)n−1
+ c for n 6= 0, 1 (II–4)

II–1. A highly relativistic proton with charge 1 and mass mp = 0.938GeV/c2 has

initial momentum in the ẑ direction ~Pproton = 100GeV/c ẑ. This proton collides
elastically with a gold nucleus at rest with an impact parameter 100fm. The
gold nucleus has been stripped of all electrons and has atomic number Z = 79
and atomic weight 197AMU . You may assume that the gold nucleus has a
radius that is negligible.

a) Integrate d~Pproton

dt
to find the total change in momentum ∆~Pproton of the

proton, approximating its trajectory with a straight line trajectory at
nearly the speed of light through the fixed Coulomb field of the nucleus.
Assume that the recoil of the nucleus is negligible.

b) What is the deflection angle of the proton from this scattering process?

II–2. A system of three distinguishable spin-1/2 particles, whose spin operators are
~S1, ~S2 and ~S3, are governed by the Hamiltonian

H =
A

h̄2
~S1 · ~S2 +

B

h̄2
(~S1 + ~S2) · ~S3 .

Find the energy levels of the system and their degeneracies.
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II–3. Two long, straight copper pipes, each of radius R, are held a distance 2d apart;
we assume that d > R. One pipe is held at potential V0 and the other at
potential −V0. Using image charges, find the potential everywhere.

II–4. The idealized Diesel engine cycle consists of four processes. Ideal gas (air)
undergoes: (i) an isentropic compression from volume V1 to volume V2, (ii) an
isobaric heating in which the volume expands to V3, (iii) an isentropic expansion
to volume V1, and (iv) an isochoric cooling to the initial temperature. Let rc =
V2/V1 be the compression ratio, re = V3/V1 be the expansion ratio, γ = CP/CV

be the ratio of specific heats of air, and P2 and V2 be the pressure and volume,
respectively, at the end of process (i).

a) Sketch the P -V diagram for this cycle.

b) Compute the work done by the ideal gas (air) in each process.

c) Compute the amount of heat which is put in the system and the amount
that goes out.

d) Compute the efficiency of the idealized Diesel engine.

e) In what limit the efficiency of the idealized Diesel engine becomes the
ideal thermodynamic efficiency?

Your results must be written in terms of rc, re, γ, P2 and V2.
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I - 1

Let the tilt angle and the major semi-axis be β and a respectively. We have

2a sinβ =
h

2
; 2a cosβ =

3h

2
tanα

solved as

a =
h

4

√
1 + 9 tan2 α ; β = arcsin

1√
1 + 9 tan2 α

The center of the ellipse is a distance X0 = h
4 tanα to the left and at a height z = 3h/4. At that height, the radius

of the cone is R0 = 3
4h tanα. This means that at the center, the minor semi-axis b is found by

b2 +X2
0 = R2

0 ⇒ b =
h√
2
tanα

a) The ellipse is parametrized by one angle coordinate as

x = a cosφ ; y = b sinφ

The potential is V = mga cosφ sinβ = 1
4mgh cosφ. This leads to

L = T − V =
1

2
m

[
a2 sin2 φ+ b2 cos2 φ

]
φ̇2 − 1

4
mgh cosφ

=
mh2φ̇2

32

(
8 tan2 α+

sin2 φ

cos2 α

)
− 1

4
mgh cosφ

From this, the Euler-Lagrange equation of motion is

d

dt

[
h

2

(
8 tan2 α+

sin2 φ

cos2 α

)
φ̇

]
= g sinφ

b) The velocities depend on the initial conditions, from the conservation of energy, we just know that

v2lower = v2upper + gh

I - 2

Since the potential is even, the eigenstates will be either even or odd. ([P, H] = 0) The first excited state will
therefore have a single zero at x = 0. We want the energy to be negative and therefore, in the region 0 ≤ x ≤ a we
have

ψ(x) = sinh(κx)

Then, in order to be renormalizable, the wave function should break into

ψ(x ≥ a) = sinh(κa)eκae−κx

The change in derivative is

−2mg

ℏ2
sinh(κa) =

∫ a+

a−
ψ′′(x)dx = ∆ψ′ = −κ [eκa sinh(κa) + cosh(κa)]

We can find the minimum g that allows this equation to have a solution via graphical methods; but we already
know that the threshold happens when the state is ’barely bound’ and therefore we set κ = 0 and read gc as

gc =
ℏ2

2ma
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I - 3

a)

ε0A

d

b) The electric field does not change so long as the charges don’t change (σ/ε0) and therefore the potential
doubles.

V → 2VP2

c)

VP2

(
1 + e−2dt/Rε0A

)

where R is the resistance of the current (internal of the battery, wirings, etc.)

d)

W =

∫ ∞

0

RI2 dt =

∫ ∞

0

dtR(C2V̇ )2 =
ε0A

4d
V 2
P2

I - 4

a)

Kx(x = 0, t = 0) = −λ∂T
∂x

|x=0,t=0 = −2πλT0
L

Kx(x = L, t = 0) = 0

b) For all positive integers n > 0:

Qn(x) =

√
2

L
sin

(nπx
L

)
; Wn(t) = exp

[
−α(nπ

L
)2t

]

c)

T (x, t) = T0

[
exp

(
−π

2αt

L2

)
sin

(πx
L

)
+

1

2
exp

(
−4π2αt

L2

)
sin

(
2πx

L

)]

II - 1

a)

∆P =

∫ +∞

−∞
F dt =

∫ +∞

−∞
dt

Ze2

4πε0

b

r3(t)
≈ Ze2b

4πε0c

∫
dx

(x2 + b2)3/2
=

Ze2b̂

2πε0cb
≈ 2.275MeV/c

b)

ψ ≈ |∆P

P
| ≈ 2.275× 10−5 rad
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II - 2

Let us first re-write the Hamiltonian as

H =
−A
2ℏ2

[
(S1 + S2)

2 − S2
1 − S2

2

]
− B

2ℏ2
[
(S1 + S2 + S3)

2 − (S1 + S2)
2 − S2

3

]

=
3(2A+B)

8
− A+B

2ℏ2
(S1 + S2)

2 − B

2ℏ2
(S1 + S2 + S3)

2

Now we just need to know the total angular momenta numbers for (S1 + S2) and (S1 + S2 + S3).

E =





3A
4 0⊕ 1

2 = 1
2 g = 2

−A+4B
4 1⊕ 1

2 = 1
2 g = 2

−A+10B
4 1⊕ 1

2 = 3
2 g = 4

II - 3

These cylinders are the equipotential surfaces from linear charge distributions ±λ a distance 2a apart where

λ =
2πε0V0

cosh−1(d/R)
; a =

√
d2 −R2

Leading to the potential field

ϕ =
V0

2 cosh−1(d/R)
log

(
(x− a)2 + y2

(x+ a)2 + y2

)

II - 4
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