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Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 4th, 2017

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (I–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (I–2)

Indefinite integrals:

∫
x

(x2 + a2)n
dx =

1

2(1− n)

1

(x2 + a2)n−1
n+ c for n 6= 0, 1 (I–3)

I–1. Three spheres of masses m1, m2, and m3 are placed on a thin rod as shown
in the figure (they can slide without friction). Initially, m1 and m3 are at rest
and m2 has speed V moving toward m3.

i) State the condition(s) required for m2 to collide with m1. Assuming it
is (they are) met, determine the speeds of m1 and m3 after their first
collision with m2.

ii) Assuming that m1 � m2 and m3 � m2, determine the asymptotic speeds
of m1 and m3.

Assume that all collisions between the spheres are elastic.

m m mV1 2 3

I–2. Consider a 1-dimensional quantum system with the Hamiltonian

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2 + λx̂ .

i) Compute the expectation value of Ĥ in the Gaussian state

ψ(x) = A exp(−a(x− b)2) .

ii) Minimize 〈ψ|Ĥ|ψ〉 with respect to a and b.

iii) Compare your results for a and b at the minimum of 〈ψ|Ĥ|ψ〉 with the
corresponding values of the exact ground state wave function.
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I–3. Consider two long parallel conducting wires extended along the ẑ axis and
separated by distance d. The radius of each wire is r0 � d so you may assume
that the electric field at the surface of the wire has nearly azimuthal symmetry
about the wire axis. Find ρc, the capacitance per unit length of the pair of
wires.

I–4. Consider an ideal gas of atoms at chemical potential µ = −1eV and a temper-
ature given by kBT = 0.1eV . The gas is in equilibrium with a metal surface
with isolated binding sites for the atoms. In each binding site there can be 0,
1, or 2 attached atoms:

- the energy with 0 attached atoms is E = 0

- the energy with 1 attached atom is E = −1eV

- the energy with 2 attached atoms is E = −1.9eV .

i) Determine the probability that a site has no attached atoms.

ii) Determine the average number of attached atoms at each site.

iii) If we keep the temperature of the gas the same, should we increase or
decrease its pressure to have equal probabilities of 1 and 2 atoms being
attached to a given site?

iv) Find the ratio by which we must increase or decrease the pressure of the
gas (held at constant temperature) to have equal probabilities of 1 and 2
atoms being attached at a given site.
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Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 4th, 2017

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please use a new blue book for each question. Remember to write your name
and the problem number of the cover of each book.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 inch 2.54 cm
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Definite integrals:

∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Indefinite integrals:

∫
x

(x2 + a2)n
dx =

1

2(1− n)

1

(x2 + a2)n−1
n+ c for n 6= 0, 1 (II–3)

II–1. A pendulum of length b and mass bob m is oscillating at small angles when
the length of the pendulum string is shortened with velocity α ( db

dt
= −α).

Determine the Lagrangian equations of motion for this pendulum.

II–2. Consider a spin-1/2 system with magnetic moment ~µ = µ0 ~σ located in a
uniform time-independent magnetic field B0 in the positive z direction. For
the time interval 0 < t < T an additional uniform time-independent field B1 is
applied in the positive x direction. During this interval , the system is again
in a uniform constant magnetic field, but of different magnitude and direction
z′ from the initial one. At and before t = 0 the system is in the m = 1/2 state
with respect to the z-axis.

i) At t = 0+, what are the probabilities for finding the system with spin
projections m′ = ±1/2 with respect to the z′ direction ?

ii) What is the time development of the energy eigenstates with respect to
the z′ direction, during the time interval 0 < t < T ?

iii) At t = T , what is the probability amplitude for observing the system in
the spin state m = −1/2 along the original z-axis?

Express your answers in terms of the angle θ between the z and z′ axes and
the frequency ω0 = µ0B0/h̄. Note ~σ = (σ1, σ2, σ3) denote the Pauli matrices.
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II–3. A sphere of radius a is uniformly magnetized and is equivalent to a perfect
magnetic dipole of magnitude M0 pointing in the positive z direction.

i) Find the vertical and the radial components of the magnetic field.

ii) A horizontal rigid ring of mass m, radius b and resistance R is located
with its center along the vertical axis at a distance z0 > a above the
center of the sphere and it is released from rest. Find an expression for
the current in the ring as a function of time, assuming that the ring falls
for a short time with acceleration due to gravity and that it has vanishing
self-inductance.

iii) Assuming again that the ring has no self-inductance but accounting for
the magnetic force on the induced current, find the differential equation
for the position, velocity and acceleration for short times.

II–4. A simple theory of the thermodynamics of a ferromagnet uses the free energy
F written as a function of the magnetization M as

F = −HM + F0 + A(T − Tc)M2 +BM4 ,

where H is the magnetic field, F0, A,B, Tc are positive constants and T is the
temperature.

i) What condition on the free energy F determines the thermodynamically
most probable value of the magnetization M at equilibrium?

ii) Determine the value of M for T > Tc .

iii) For H = 0, find the values of M for T > Tc and T < Tc such that the
equilibrium is stable.

II–3



I - 1

i) The condition is that m2 bounces back:
m2 < m3

writing the conservation laws for momentum and energy for the first collision, we find that m3 moves to the right
with velocity

V3 =
2m2V

m2 +m3

and m2 goes back with velocity

V ′ =
m3 −m2

m3 +m2
V

Therefore, the final velocity of m1, moving to the left will be

V1 =
2m2

m1 +m2

m3 −m2

m3 +m2
V

ii) Asymptotically, and when no collisions occur anymore, both m1 and m3 are moving faster than m2. Being
much lighter, this means that the momentum and energy carried by m2 is negligible. Therefore, we may write the
conservation laws as 




m3V3 −m1V1 = m2V

m3V
2
3 +m1V

2
1 = m2V

2

Now before solving this, note that the momenta actually add up to zero compared to the individual momenta of
the masses m1 and m3 in this asymptotic limit; here is why:

∆P

Pi
=
m3V3 −m1V1

miVi
=
m2V

miVi
=

1

V

m3V
2
3 +m1V

2
1

miVi
∼ Vi
V

→ 0

where Vi and mi are the typical velocities and masses of the two lateral balls. Now we can easily solve the equations
as

Vi =
V

mi

√
m1m2m3

m1 +m3
for i = 1, 3

I - 2

i) Comparing with the normal distribution we find

⟨ψ|x |ψ⟩ = b ; ⟨ψ| (x− b)2 |ψ⟩ = 1

4a

On the other hand
ψ′′ = −2a(1− 2a(x− b)2)ψ

Therefore

E(a, b) = ⟨ψ|H |ψ⟩ = a

2m
+

1

2
mω2(b2 +

1

4a
) + λb

ii)

b∗ =
−λ
ω2m

; a∗ =
ωm

2

with

E(a∗, b∗) =
ω

2
− λ2

2ω2m
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iii)

H =
p2

2m
+

1

2
mω2(x− b∗)2 − 1

2
mω2b∗2

and therefore the minimum energy is

E0 =
ω

2
− λ2

2ω2m

I - 3

Assuming they have uniform per unit length charge density λ, we get

1

2
∆V =

λ

2πε0
log(d/r0)

therefore

c =
πε0

log(d/r0)

I - 4

i)

Z =

2∑

n=0

e−βEn+nβµ = e−10 + e−10 + e−11

Therefore

P0 = P1 =
e

2e+ 1
; P2 =

1

2e+ 1

ii)

⟨n⟩ =
∑

n

nPn =
e+ 2

2e+ 1

iii, iv) For this to happen, we need

E1 − µ = E2 − 2µ ⇒ µ = −0.9 eV

So we need to increase µ by 0.1 eV . Looking at the differential −SdT + V dP + µdN , and noting that µ = µ(P, T ),
we get

(
∂µ

∂P
)T = (

∂V

∂N
)P,T =

kT

P

Therefore
µ = µ0(T ) + kT log(P )

Meaning that for kT = 0.1 eV , we need to increase the pressure to P ′ = eP .
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II - 1

L =
m

2

(
b2(t)ϕ̇2 + ḃ2(t)

)
+mgb(t) cosϕ

The equation of motion is

ϕ̈− 2α

b(t)
ϕ̇+

g

b(t)
sinϕ = 0

II - 2

i) It’s still pointing in +z direction, therefore

P± =
1± cos θ

2

ii) It rotates around the ẑ′ axis with angular velocity ω0 = µ0

√
B2

0 +B2
1/ℏ.

iii)

P± =
1

2

[
1±

(
cos2 θ + sin2 θ cosω0T

)]

II - 3

i) In the absence of free current sources, the magnetic field H = µ−1
0 B−M can be written as H = −∇ψ. With

ψ(r, θ) =
∑

n

AnPn(cos θ) ×





( ra )
n r ≤ a

(ar )
n+1 a ≤ r

The boundary condition ∇ ·B = 0 gives

An =

{
1
3M0a n = 1

0 o.w.

Therefore

B =
µ0M0

3





2ẑ r ≤ a

a3

r3 (2 cos θr̂+ sin θθ̂) a ≤ r

ii, iii) Let’s start with the flux as a function of the position:

Φ(z) =
π

3
µ0M0a

3

∫ z2+b2

z2

3z2 − x

x2.5
dx =

2πµ0M0a
3b2

3(b2 + z2)3/2

Therefore, the current would be

I = − 1

R

dΦ

dz

dz

dt
=

2πµ0M0a
3b2

R(b2 + z2)5/2
z
dz

dt

For the case of a free fall:

I(t) =
−2πµ0M0a

3b2

R[b2 + (z0 − 1
2gt

2)2]5/2
(z0 −

1

2
gt2)gt
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Of course, there is a resistive force due to the current, with a z component

F = −2πbIBs = −4π2b4µ2
0M

2
0 a

6

R(b2 + z2)5
z2
dz

dt

the differential equation is then

m
d2z

dt2
+

(2πµ0M0b
2a3)2

R

z2

(b2 + z2)5
dz

dt
= 0

II - 4

i) The most probable M corresponds to the minimum value of the free energy F as a function of (T,M).

ii) The unique equilibrium value of M is found by solving

M3 +
A(T − Tc)

2B
M − H

4B
= 0

iii) For H = 0:
∂F

∂M
= 2A(T − Tc)M + 4BM3

when T > Tc, the only solution is M = 0 and it is stable since ∂2F
∂M2 |M=0 = 2A(T − Tc) > 0. When T < Tc, the

solution at M = 0 still exists but is unstable. Instead, the two solutions at

M± = ±
√
A(Tc − T )

2B

These are stable since
∂2F

∂M2
|M± = 2A(Tc − T ) > 0
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