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Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 6, 2021

Part I

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please scan your answers each question in a different file, as each problem has
a different grader.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Expectations:

• Do all the work by yourself, with no help of any kind from anyone else.

• This is a closed-book exam, so no books or notes are allowed.

• Not allowed during the exam: any internet searches, any communication with
others, use of any print or electronic resources.

• If necessary, a simple calculator may be used.

• Clearly include all steps and explanations in your submission.

• The exam work period is 9am-12:00pm EST; you have until 12:30pm to submit
your solutions.

Any questions should be addressed to your proctor.

Upload a separate file (scan of handwritten note is fine) which contains
the following:

Your name
”I will comply with all PSU academic integrity expectations and those
specific to this exam.”
Your signature
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Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 GeV 1.609× 10−10 J

Definite integrals:
∫ ∞

0

e−x
2

dx =

√
π

2
. (I–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (I–2)

Indefinite integrals:
∫

x

(x2 + a2)n
dx =

1

2(1− n)

1

(x2 + a2)n−1
n+ c for n 6= 0, 1 (I–3)

Gradient in spherical polar coordinates (r, θ, φ):

~∇ = ~er
∂

∂r
+ ~eθ

1

r

∂

∂θ
+ ~eφ

1

r sin θ

∂

∂φ
, (I–4)

Laplacian in spherical polar coordinates (r, θ, φ):

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (I–5)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+
∂2f

∂z2
. (I–6)
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Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 i
−i 0

)
σz =

(
1 0
0 −1

)
. (I–7)

I–1. Two Lagrangians L′ and L, which differ by the total time derivative dF/dt of
some function F (q, t),

L′ = L+ dF/dt ,

are physically equivalent, i.e. they lead to the same Lagrange’s equations of
motion.

(a) What is the relation between the generalized momenta p′ and p which
these two Lagrangians yield?

(b) What is the relation between the Hamiltonians H ′ and H which these two
Lagrangians yield?

(c) Show explicitly that Hamiltonian’s equations of motion in the primed
quantities are equivalent to those in the unprimed quantities.

I–2. In this problem, we consider the optical transition rate of light through graphene.
Electrons in graphene are described by two-dimensional massless Dirac fermions
with the Hamiltonian H0 = h̄νf (kxσx + kyσy), where σx and σy are 2× 2 Pauli
matrices and kx and ky are the components of the wave vector.

a) Find the energies E±(~k), of the Hamiltonian H0, as well as the corresponding
eigenstate wave functions, denoted as ψ±.

b) Consider the coupling of Dirac electrons with electromagnetic fields with
the full Hamiltonian

H = h̄νf ((kx +
e

h̄
Ax)σx + (ky +

e

h̄
Ay)σy) .

Denote H1 = eνf (Axσx + Ayσy), where ~A = (Ax, Ay) is the vector potential of
the light, and calculate the transition matrix element

M+−(~k) = 〈ψ+|H1|ψ−〉 .
Assume that the vector potential ~A is that to light with frequency ω, and the
corresponding electric field given by ~E(t) = ~E0e

iωt.

c) Now let’s assume that E−(~k) < E+(~k) and that the E−(~k) states are always

occupied while the E+(~k) states are unoccupied. Use the Fermi’s golden rule
to calculate the optical transition rate Γ of Dirac electrons in graphene. Recall
that the Fermi’s golden rule is given by

Γ =
2π

h̄

∫
d2k

(2π)2
|M+−(~k)|2δ(E+ − E− − h̄ω) ,

where ω is the frequency of the light.
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I–3. Two bodies have internal energy given by U = NCT . The number of particles
N and the specific heat C are the same for each body; the initial temperatures
of the two bodies are T1 and T2. The two bodies are used to drive a Carnot
engine which will bring them to a common final temperature Tf while doing
work. The Carnot cycle, comprised of quasistatic isotermal transformations
and two quasistatic adiabatic transformations, is sketched in figure I-3.1.

a) Find the final temperature Tf .

b) Find the work done by the engine.

P

V

T1

T2

Figure I-3.1 The Carnot cycle.

I–4. Consider a parallel plate capacitor in vacuum, with circular plates each of
radius a, separated by a distance d, see Figure I-4.1.

d

a z

y

x

Figure I-4.1 Circular capacitor.

A current I is slowly charging the capacitor. Using the Poynting vector, defined
in terms of the electric and magnetic fields ~E and ~B by

~S =
1

µ0

~E × ~B

and representing the directional energy flux of an electromagnetic field, find the
rate at which the electromagnetic field feeds energy into the capacitor. Show
that the energy input is also equal to IV where V is the potential difference
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between the plates. Assume that the electric field is uniform out to the edges
of the plates.
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Qualifying Exam for Ph.D. Candidacy

Department of Physics

February 6, 2021

Part II

Instructions:

• The following problems are intended to probe your understanding of basic phys-
ical principles. When answering each question, indicate the principles being
applied and any approximations required to arrive at your solution. If infor-
mation you need is not given, you may define a variable or make a reasonable
physical estimate, as appropriate. Your solutions will be evaluated based on
clarity of physical reasoning, clarity of presentation, and accuracy.

• Please scan your answers each question in a different file, as each problem has
a different grader.

• We suggest you read all four of the problems before beginning to work them.
You should reserve time to attempt every problem.

Expectations:

• Do all the work by yourself, with no help of any kind from anyone else.

• This is a closed-book exam, so no books or notes are allowed.

• Not allowed during the exam: any internet searches, any communication with
others, use of any print or electronic resources.

• If necessary, a simple calculator may be used.

• Clearly include all steps and explanations in your submission.

• The exam work period is 9am-12:00pm EST; you have until 12:30pm to submit
your solutions.

Any questions should be addressed to your proctor.

Upload a separate file (scan of handwritten note is fine) which contains
the following:

Your name
”I will comply with all PSU academic integrity expectations and those
specific to this exam.”
Your signature
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Fundamental constants, conversions, etc.:

Avogadro’s number NA 6.022× 1023 mol−1

Boltzmann’s constant kB 1.381× 10−23 J K−1

Electron charge magnitude e 1.602× 10−19 C
Gas constant R 8.314 J mol−1 K−1

Planck’s constant h 6.626× 10−34 J s
h̄ = h/2π 1.055× 10−34 J s

Speed of light in vacuum c 2.998× 108 m s−1

Permittivity constant ε0 8.854× 10−12 F m−1

Permeability constant µ0 1.257× 10−6 N A−2

Gravitational constant G 6.674× 10−11 m3 kg−1 s−2

Standard atmospheric pressure 1 atmosphere 1.01× 105 N m−2

Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Electron rest mass me 9.109× 10−31 kg = 0.5110 MeV c−2

Proton rest mass mp 1.673× 10−27 kg = 938.3 MeV c−2

Origin of temperature scales 0 ◦C = 273 K
1 large calorie (as in nutrition) 4.184 kJ
1 GeV 1.609× 10−10 J

Definite integrals:
∫ ∞

0

e−x
2

dx =

√
π

2
. (II–1)

∫ ∞

0

xne−xdx = Γ(n+ 1) = n!. (II–2)

Indefinite integrals:
∫

x

(x2 + a2)n
dx =

1

2(1− n)

1

(x2 + a2)n−1
n+ c for n 6= 0, 1 (II–3)

Gradient in spherical polar coordinates (r, θ, φ):

~∇ = ~er
∂

∂r
+ ~eθ

1

r

∂

∂θ
+ ~eφ

1

r sin θ

∂

∂φ
, (II–4)

Laplacian in spherical polar coordinates (r, θ, φ):

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (II–5)

Laplacian in cylindrical coordinates (r, θ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+
∂2f

∂z2
. (II–6)
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Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 i
−i 0

)
σz =

(
1 0
0 −1

)
. (II–7)

II–1. A relativistic proton collider consists of two storage rings, each with 100 GeV
protons orbiting in the horizontal plane in the presence of nearly constant ver-
tical magnetic fields. There is a slight displaced between these nearly circular
orbits with one beam orbiting clockwise and the other counter-clockwise. Each
ring has of radius Rring = 1 km and contains 110 proton pulses (called bunches).
At time t = 0, each bunch contains 1011 protons. At the time they collide the
protons are randomly located within a cylindrical shape of length L = 1m
and radius R = 0.1mm. The cylinder axis is always concentric with the local
beam axis. Bunch collisions only occur within a 1m long interaction region
along the ring circumference, where the circular beam orbits have been slightly
perturbed so the bunches in this region move along a single common collision
axis. A given bunch in one beam always collides with a particular bunch in the
other beam. All proton collisions occur within the collision region.

At the interaction point, all protons in a beam bunch have equal momentum
vectors parallel to the beam line and the opposite that of the other colliding
beam bunch.

a) Absorption Cross section: Assume a proton passing through a bunch breaks
up if its trajectory takes it to within a transverse distance of d = 10−15m from
a proton in the opposing bunch. What is the rate of interaction within a single
bunch?

b) Assume the decay of the number of protons in a bunch is only due to these
absorptive collisions. Derive the expression for the number of protons in a
bunch as a function of time, N(t) in terms of variables (Rring, R, L, d).

(Note: N(0) = 1011 and that each bunch in one ring only collides with a unique
partner bunch in the other ring, removing 1 proton from each of the partner
bunches. Assume that the speed of protons is very near the speed of light.)

II–2. A particle is initially in its ground state in a box with infinite walls at x = 0
and x = L.

a) Find the probability density for finding the particle at position x = L/2.

a) The wall at x = L is suddenly moved to x = 2L. Find the probability that
the particle is found in the second excited state of the expanded box.

b) Suppose that the walls of the original box, x ∈ [0, L], are suddenly dissolved
while the particle was in its ground state. Find the probability that the freed
particle has momentum p.
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II–3. Consider a rigid lattice of indistinguishable spin-1/2 atoms in a magnetic field
H. Each spin has two states, with energies +µ0H and −µ0H for spins up and
down, respectively. The system is at temperature T .

a) Find the canonical partition function.

b) Determine the total induced magnetic moment of the system.

c) Determine the entropy of the system.

II–4. A controlled voltage source, shown in Figure II-4.1, produces a voltage signal
at output A. The source can be in one two states, shown in Figure II-4.2.

Figure II-4.1 Controlled voltage source.

Figure II-4.2 The two possible states of the controlled voltage source.

When the voltage source is in state 1, the source provides 10 volts between
output A and ground, with 1000 ohms of output impedance as shown. When
the voltage source is in state 2, it provides a direct short to ground. The input
B, which has infinite input impedance and is used to trigger a change of state.

• When the voltage at B increases and passes through 7 volts, the state is set
to “state 2”.

• When the voltage at B is decreases and passes through 2 volts, the state is
set to “state 1”.
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a) Determine the differential equation for the charge on the capacitor, Q(t),
when the source is in state 1.

b) Determine the differential equation for VB(t) when the source is in state 2.
Write down the general solution for VB(t).

c) Determine the time for a full cycle state 1 to state 1.
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I-1

a)

p′i =
∂L′

∂q̇i
=
∂L

∂q̇i
+

∂

∂q̇i

(∂F
∂t

+
∑

j

∂F

∂qj
q̇j
)
= pi +

∂F

∂qi

b)

H ′ = p′iq̇i − L′ = (pi +
∂F

∂qi
)q̇i − L− ∂F

∂t
− ∂F

∂qi
q̇i = H − ∂F

∂t

c) Let’s start with the EOM in the primed formulation

dqi
dt

=
∂H ′

∂p′i

To find the partial derivative, note that keeping (qi, t) constant, we have

dp′i = dpi ; dH ′ = dH

Therefore
∂H ′

∂p′i
=
∂H

∂pi

and therefore we prove the equivalence for the first set of equations. Next

dp′i
dt

=
dpi
dt

+
∂2F

∂qi∂t
+

∂2F

∂qi∂qj
q̇j = −∂H

′

∂qi

This time, to evaluate the derivative on the right hand side, note that dp′j = dt = 0 and therefore

δpj = − ∂2F

∂qj∂qi
δqi

and

δH ′ =
∂H

∂qi
δqi −

∂H

∂pj

∂2F

∂qi∂qj
δqi −

∂2F

∂t∂qi
δqi

Finally this leads to
dp′i
dt

=
dpi
dt

+
∂2F

∂qi∂t
+

∂2F

∂qi∂qj
q̇j = −∂H

∂qi
+
∂H

∂pj

∂2F

∂qi∂qj
+

∂2F

∂t∂qi

And this is clearly equivalent to
dpi
dt

= −∂H
∂qi

I-2

I change νf to ωf .
a)

H = ωf

(
0 kx − iky

kx + iky 0

)

Which is diagonalized as

ψ± =
1√
2

(
1

±eiα
)
exp

[
i(kxx+ kyy)

]
/
√
2π

where
α ≡ arg(kx + iky)
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And the energies are

E± = ±ωf

√
k2x + k2y

b) Neglecting the spatial dependence of the vector potential, this is given by

M =
ωfe

2
(1 e−iα)

(
0 Ax − iAy

Ax + iAy 0

)(
1

−eiα
)

= ieωf Im(Ae−iα) = ieωf |A| sin(φ)
Where φ is the angle between k and A vectors.

c) First of all, let’s note that
|E| = c|B| = kc|A| = ω|A|

And therefore
M = ie

ωf

ω
E0 sinφ

Now we can do the integration as

Γ = 2π

∫
d2k

(2π)2
e2ω2

fE
2
0

ω2
sin2 φ δ

(
2ωf |k| − ω

)

=
e2E2

0ωf

4πω2

∫
kdk dφ sin2 φ δ

(
k − ω

2ωf

)
=

e2E2
0

8ω

I-3

a, b) If the engine takes a small amount of heat d̄Q from T1, then

dT1 = − d̄Q

NC

d̄W = (1− T2/T1)d̄Q

dT2 =
T2d̄Q

NCT1

From the first and the third equation

dT2 = −T2
T1
dT1

Therefore T1T2 is a constant and the final temperature is given by

Tf =
√
T1T2

Then the work is given by

W = −NC
∫ √

T1T2

T1

dx
(
1− T1T2

x2

)

= NC
(
T1 + T2 − 2

√
T1T2

)
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I-4

Neglecting edge effects and in the adiabatic regime, the electric field is given by

E =
V (t)

d
ẑ

everywhere. Then the magnetic field is found by the Ampere’s law as

B =
µ0ε0
2d

dV

dt
sφ̂

Therefore the Poynting vector is

S = −ε0V V̇ s
2d2

ŝ

The energy is moving inside the capacitor volume at a rate

U̇in = 2πad× |S| = πε0a
2

2d

d

dt
V 2 =

d

dt

(1
2

πa2ε0
d

V 2
)
=

d

dt
(
1

2
CV 2) = V (CV̇ ) = V Q̇ = V I

This proves everything that we wanted to prove.

II-1

a) The probability that a proton passes an opposing bunch without breaking down is

P[no interation] = exp

(
−n σL

AL

)
= e−Nσ/A ≈ 1−N ×

( d
2R

)2
= 1− 5× 10−12

b) The bunch-bunch collisions occur at a rate

f =
c

2πRring

Therefore, after some time ∆T passes, f∆T bunch-bunch collisions occur and

∆N = −N × c∆T

2πRring
×N ×

( d
2R

)2

This leads to the differential equation
dN

dt
= −

( cd2

8πR2Rring

)
N2

solved as

N(t) =
N0

1 + N0cd2

8πR2Rring
t
≈ 1011

1 + 1.2× 10−7s−1 × t

II-2

a) The wave function is

ψ1 =

√
2

L
sin
(πx
L

)

and therefore

ρ(L/2) = |ψ1(L/2)|2 =
2

L

14



b) The wave function does not follow the change immediately; thus we can find the overlap as

⟨2|ψ1⟩ =
√
2

L

∫ L

0

sin
(πx
L

)
sin
(πx
L

)
dx =

1√
2

and the probability is

P2 =
1

2

c) Once again, the wave function does not follow the quick change and the probability density amplitude is given
by (not the probability)

ϕ(p) =
1√
πL

∫ L

0

sin
(πx
L

)
e−ipxdx

= 2
√
πLe−ipL/2 cos(pL/2)

π2 − p2L2

The probability density is then

ρ(p) =
4πL

(π2 − p2L2)2
cos2(pL/2)

II-3

a)

Z =
∑

x∈{±1}n

exp

(
βµ0H

∑

i

xi

)
=
[
2 cosh(βµ0H)

]N

b)

⟨M⟩ = γ
ℏ
2
⟨
∑

i

xi⟩ = γ
ℏ
2
N tanh(βµ0H)

c)

S = −βE + logZ = N
{
− βµ0H tanh(βµ0H) + log

[
2 cosh(βµ0H)

]}

II-4

Since I prefer working with symbols, let’s define

R ≡ 1 kΩ ; C ≡ 1µF ; V0 = 10V ; V− = 2V ; V+ = 7V

a)

dQ

dt
=

1

2R
(V0 −

Q

C
)

15



b)

C
dVB
dt

= −VB
R

c) When VB hits V− = 2V , the slope will be positive as

V̇B =
1

2RC
(V0 − VB)

suggests. The solution is
VB(t) = V0 − (V0 − V−)e

−t/2RC

Then, when the voltage hits V+ at time

t1 = 2RC log
(V0 − V−
V0 − V+

)

it gets into state 2 and starts decreasing according to

V̇B = −VB/RC

solved as
VB(t) = V+e

−(t−t1)/RC

Now we can see when it completes its circle of life and comes down to V− again:

T = t1 +RC log

(
V+
V−

)
= RC log

[V+(V0 − V−)
2

V−(V0 − V+)2

]
≈ 3.2ms
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