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My units are such that ¢ = 47G = 1; this may lead to some discrepancies with the book.

Chapter 1

ds? = dr? + r? sin® ady?

b)

x=rcos(psina) ; y=rsin(p sina)
No, as 7 varies from 0 to oo, and ¢ ranges in [0, 27|, only parts of the 2D = — y plane with arg(z,y) < 2w sina.
¢) This is best seen in the 2 —y coordinate system, the vector is parallel transported along the portion of the circle

with 0 < 0 < 27sin a; then it teleports across the wedge back to where it started its journey. During this last ma-
neuver, the vector picks an extra angle, equal to the wedge opening, 27(1—sin «) in the same direction of the journey.
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a)
%5 =tV (—t%a) = =2t tFV it% = —2kt%, = 2ke
leading to

A
e(X) = e(N\o) exp <2A dei(X))

0



b)

a = t“vu(fat ) = §tMt V{pga} + K£&at™ = Kp
solved as
A
pO) = p0%) exp ( / dxm'>>
Ao
c)
dq ay_ L1 ua
P uHV , (bou®) = §u’*u Vipbay = —c
therefore .
alr) =a(m) - [ dr'c(@(r")
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Let’s use the Leibniz property only, assuming £,7},, = S,,.,, we have

nuvs
UV o (T AP BY) = £,(T, AP BY) = 8, AP B + T}y BY (u*V o AF — AV qu) + T}y A (u®V o BY — BV yu”)
= APB” (u*VaTu — Spy + TayV,ti® + Tpo Vyu®) =0 VA, B

Which leads to
LTy =uVolu + 10, Vu® + 1,6V, u®

Chapter 2

Chapter 3

1
Let’s work in the units with rg = 2GM/c* = 1.

a) The gradient is

d
dztd,T = dt + ﬁ—f
-

Interestingly, this is normal and timelike

Ny = (1,%,0,0)

The parametric equations are

VR -1
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t:T—2[\/E+%log<




where (R, ©, ®) are the tangent coordinates.

b) The induced metric is flat

ds®> = dR? + R?d0?

c) Let’s start with the covariant derivative V,n,:
-1

2r5/2
-1

2r(r—1)
i

2(r —1)2
Vong = /v

Von, = /rsin®

Then the nonzero components of the extrinsic curvature follow

Ving =

thr = Vrnt =

V,.n, =

-1

— . — . — in2
KRR_W ) K@@—\/ﬁ N Kq@—\/ﬁsm@

This is clearly in accordance (in fact, it’s the same calculation) with the results described in section 3.6.6. The

trace is
3

2R3/2
Since the metric is 1" independent, and n, = 0,7, the normal vector is a Killing vector. Since it has constant
length, it is also tangent to a geodesic bundle; the divergence of which is given by

K =h"Kg =

0 =V,n*=K

This agrees with the result in section 2.3.7 of the book as well.

d) Let’s use the results from part (a) directly

VRAR RAR?

R—-1 )2+
R—-1 R—-1

ds*> = —(1—1/r)dt*> +dr®/(1 — 1/r) + r?dQ® = ———— (dT —

QdQQ
R +R

— | —dT? + (dR + dT/VR)® + R?d0?
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a) The normal is best found given the constraint description of the hypersurface. It is
a’ = nABzAzB = const.

The normal is then found as

1
B
naA = aT)ABZ




ds? = napdz?dzP = — cosh(t/a)dt® + z:(dzA)2
A>0

= —cosh®(t/a)dt? + sinh®(t/a)dt* + a® cosh®(t/a)d3

= | —dt® + a® cosh®(t/a)d2

This is of course, the de Sitter space time. It’s conformally flat and is a solution to the Einstein field equations in
vacuum with positive cosmological constant.

c)

Kag = eﬁegVAnB = egegaAnB

= eﬁeﬁB(anAB - aszaAa) = aeﬁeﬁBnAB = 59a5

The other terms vanish because on the hypersurface, a is constant. Now let’s use the fully tangential component of
the Gauss-Codazzi relations; (equation 3.39). It reads

0= Raﬂuv + K(XVKBM - K(XHKBV

or

1
RaBp,V = aﬁ(gaugﬁu - gaugﬁu)
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a) The mass function is defined in the metric form
ds* = [1 —m(r)/27r] dr? + r2d0?

Comparison leads to

m = 2mr[l - (ﬁ)Q]

dl
b) The constraint equation reads
3R =4T(n,n)
Or, in terms of the mass function
dm Ay
— =dar
dr P
The regularity at the origin imposes
m(0) =0
Therefore
4
m(r) = §7r1"3p




Putting this back to the differential equation connecting rand [, we find

¢, d) This is clear from the expression for r(I) that it can not go beyond

3

2p

Tmax =

Then, since dm/dr > 0, the maximum mass is also achieved at maximum aerial radius, when the mass function
attains the value

‘ m(r) = 27 max.

e) The metric is
ds® = di* + 2

max

sin2(l/rmax)dﬂg

This space-time is symmetric under the discrete transformation
| — Trmax — 1

Therefore, the | = mryax is also a center of the polar coordinates where the area of the sphere vanishes and all
the €y variables become irrelevant. This is exactly the descriptuion of a 3 sphere, S. One just needs to define
¥ = 1/rmax to find

2 _ .2
dS - rmax

402
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The condition [K,p] = 0 is clearly necessary for regularity of the Riemann tensor because of how the Gauss-Codazzi
equations relate some components of the Riemann tensor to the extrinsic curvature. It remains to show that
R(eq,m, ep,m) is also consistent if the extrinsic curvature is the same from both sides. Let y* be the local normal
coordinate system on the hypersurface and [ be the orthogonal geodesic direction. Then, the only non-vanishing
metric derivative is

019ab = 2K ap

The Riemann component that we are after, then simplifies into
! l l

R alb = all—‘ab - 1—‘bc lca

= *6(31Kab — Kach)

Clearly, this shows that if [K;] = 0 is satisfied, the Riemann tensor will at most have a jump discontinuity and not
a delta function singulairty.
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Now that we have all of the components of the Riemann tensor, we may as well find the stress energy tensor
completely by following the standard procedure.

1 1
— H v
TQB - §R auB ZRH ;Ll/ga,B

The answer will be

Ti=-(—e’R+K?— K., K™)

N

1
T = 5(D”Kab — D,K)

Top = 3T + Z 22K 0K — 01Kap — K Kap) — hap(3Kap K™ — 20,K — K2)]

Now we can explicitly write
-Q, a 1 a a a
—[j*] = —eh*"[Th] = 5 (Dy[K*] = D*[K]) = D,$*" W

Let’s consider a timelike shell like 2 = 0. The t-component formula above asserts that the discontinuity in 7%, or
the mass flow across the shell is equal to the rate with which mass accumulates on the shell. The other components
of the formula are interpreted similarly.
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I will work in the units where Iy = 1. Also, the tangent coordinates are (¢, 6, ¢). Topologically speaking, this is the
same as a stationary space with S? topology. The space has two flattened hemispheres connected together via the
hypersurface.

a) Let’s start with finding the extrinsic curvature on both sides. The normal vector is
n = 8[

The nonzero Christoffel symbols are
Thy=+r ; *TL =+rsin®0

A0 ko + + Fl
Ipp="Ty = Ffw = F:’Zl = o
9 : ) — —
Iy, = —sinf cosf ; Fgw—Fie—cotG
From these, it follows that K, is only nonzero for angular components.
*Kop=7F1 ; *K,, = Fsin?6

Then follows Sgp:

Syt =2 ; Spg=-1 ; Sw,:fsin20

This corresponds to a surface density o, surface pressure p, and 4 velocity V as below

V=0 ; 0=2; p=-1




b) The null tangent vector is k = 9; + 9;. The expansion is

2
O = Vak® = 0uk™ + T, k" = *T7, =

This clearly changes sign from positive to negative as the geodesic crosses from the negative region to the positive
region.

¢) Raychaudhuri’s equation is

do
— = —B.3B®* — R, k"k”
d\ B RIL

Integrating this across the shell, it follows that

1+e
o0 = 7/ dl R(O; + 01,0y + 0)) = —2Spk*k> = —28;, = —4
1

—€

Which is in accordance with the explicit result we found.
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a) The first junction condition, implies that the hypersurface is described by functions
r=rt=R(r) ; tT =t (1) ; tT=tT(1)

Where ¢+ are defined via

+

dt* 1 r
= =~ /1 — -5+ (dR/dT)2
dr 1—r§/R\/ g T (AR/T)

The induced metric and coordinates are as below
ds% = —dr? + R*(1)dQ3
The normal form on each side is iR di*
t
+
——) —.0,0
(-5 50,0
And the tangent vectors are

dt* dR

po (S
er (dT’dT7

O’ 0) ; eg = (07 O’ 1’ 0) ; eg = (07 07 0’ 1)

Finding the angular components of the extrinsic curvature is not difficult

Ko = Vong = R\/1 + (dR/dr)? —r& /R
Ko = Kgpsin® 0
The 77 component is way more cumbersome

dR &t  d°R dt 3rs AR, dt rs(R—rs), dt
K. = ele’ Vo, = eldon, — T ehevn, = T2 @t et ors 4Ry, 0t Tt rs) 0y
CrérVult Crority v r Er T dr dr?2  dr? dr * 2R(R —rg) ( dT) dr 2R3 (dr)

In any case, the density and pressure are given by

—5Koo] ; p= Koo — [K+-])

5 (sl



And that means we need to prove

d[Kpgl/dr  dR _dR[K.]
[K@g] Rdr dr [K%']
b) Let
e
a4 = arcsin -2
Then
1
o= E(cosﬁ_ —cosfy) >0
1
p= E(2C080+ +tanf; —2cosf_ —tanf_) >0
8
9
Chapter 4
1

a) The EL equations are

oL oL

A, PovA,
Or 1 OF 1

- _- v TRV Ty FRV(§PSY — 585 = F°
0=—5Va( anga) SVaF" (3755 = 8005) = Vs
b)
oL 1 ,
Taﬁ = gaﬁ‘c - 289713 = FaquM - ZgaBFH Fp,u

2

a) The action is
S = *m/d/\q/*galg,é’o‘,é’ﬁ
Then, the stress-energy tensor is
-2 6S m 1
T(z) = = /d)\ —— 2,2,
g V=g(x) 09" (x)  \/—g(x) Va2 "

This is best re-written in terms of the 4 velocity of the particle as

027 — )

™ = m/dTV“V” d(z,x)




b) The conservation is equivalent to
/dx\/—g AV T =0

where Ag is any localized vector field. For a single particle, this is

0= /dx\/?gAﬁvaTaﬁ = m/dx\/?ngAﬁ(x)VB(T)Va(T)vad(z,x)

= —m/dT V“Vﬁ/dxs/—gé(z,m)va/lg = —m/dT VoVAV,,Ag
— fm/dfvava(vﬁAﬁ)+m/drAﬁvavavﬁ

T=+

= —m(V, 4)

- +m/dTA5VO‘VaV5

T=—00
= m/dT AgVov, VP
Which is equivalent to the geodesic equation.

c)

3

Let’s use the units in which r¢ = 1. The bulk action is zero since this is a vacuum solution. The extrinsic curvature
on the ¥;, are zero since the normals are killing fields. The non dynamical terms also cancel on the 3;, by virtue

of symmetry. Therefore the action is
R

S = 27T(t2 — tl)’I“Q(Kr - KO)‘

Where

1 20/T—1/r 2
K, — Ky = + [T _

2r2\/1—1/r r r

This then gives

S(R, p,t1,t2) = 7(ts — tl)[\/llil/r —ar(1 = /1= 1/7)] ‘f

and

lim S(R, p,t1,ts) = m(ty —t1)[ =1 -
R—o0

+4p(1—/1-1/p)]

1
V1i=1/p

Chapter 5



