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My units are such that c = 4πG = 1; this may lead to some discrepancies with the book.

Chapter 1

1
a)

ds2 = dr2 + r2 sin2 αdφ2

b)
x = r cos(φ sinα) ; y = r sin(φ sinα)

No, as r varies from 0 to ∞, and φ ranges in [0, 2π], only parts of the 2D x− y plane with arg(x, y) ≤ 2π sinα.

c) This is best seen in the x−y coordinate system, the vector is parallel transported along the portion of the circle
with 0 ≤ θ ≤ 2π sinα; then it teleports across the wedge back to where it started its journey. During this last ma-
neuver, the vector picks an extra angle, equal to the wedge opening, 2π(1−sinα) in the same direction of the journey.
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a)

d

dλ
ε = tµ∇µ(−tαtα) = −2tαt

µ∇µt
α = −2κtαtα = 2κε

leading to

ε(λ) = ε(λ0) exp

(
2

∫ λ

λ0

dλ′ κ(λ′)

)
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b)
dp

dλ
= tµ∇µ(ξαt

α) =
1

2
tµtα∇{µξα} + κξαt

α = κp

solved as

p(λ) = p(λ0) exp

(∫ λ

λ0

dλ′ κ(λ′)

)

c)
dq

dτ
= uµ∇µ(bαu

α) =
1

2
uµuα∇{µbα} = −c

therefore
q(τ) = q(τ0)−

∫ τ

τ0

dτ ′ c (xα(τ ′))

4
Let’s use the Leibniz property only, assuming £uTµν = Sµν , we have

uα∇α(TµνA
µBν) = £u(TµνA

µBν) = SµνA
µBν + TµνB

ν(uα∇αA
µ −Aα∇αu

µ) + TµνA
µ(uα∇αB

ν −Bα∇αu
ν)

⇒ AµBν (uα∇αTµν − Sµν + Tαν∇µu
α + Tµα∇νu

α) = 0 ∀A,B

Which leads to
£uTµν = uα∇αTµν + Tαν∇µu

α + Tµα∇νu
α

Chapter 2

Chapter 3

1
Let’s work in the units with rS = 2GM/c2 = 1.

a) The gradient is

dxµ∂µT = dt+

√
r dr

r − 1

Interestingly, this is normal and timelike

nα =
(
1,

√
r

r − 1
, 0, 0

)
The parametric equations are

t = T − 2
[√

R+
1

2
log
(√R− 1√

R+ 1

)]
; r = R ; θ = Θ ; ϕ = Φ
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where (R,Θ,Φ) are the tangent coordinates.

b) The induced metric is flat
ds2 = dR2 +R2dΩ2

c) Let’s start with the covariant derivative ∇µnν :

∇tnt =
−1

2r5/2

∇tnr = ∇rnt =
−1

2r(r − 1)

∇rnr =
−
√
r

2(r − 1)2

∇θnθ =
√
r

∇φnφ =
√
r sin2 θ

Then the nonzero components of the extrinsic curvature follow

KRR =
−1

2R3/2
; KΘΘ =

√
R ; KΦΦ =

√
R sin2 Θ

This is clearly in accordance (in fact, it’s the same calculation) with the results described in section 3.6.6. The
trace is

K = habKab =
3

2R3/2

Since the metric is T independent, and nµ = ∂µT , the normal vector is a Killing vector. Since it has constant
length, it is also tangent to a geodesic bundle; the divergence of which is given by

θ = ∇αn
α = K

This agrees with the result in section 2.3.7 of the book as well.

d) Let’s use the results from part (a) directly

ds2 = −(1− 1/r)dt2 + dr2/(1− 1/r) + r2dΩ2 = −R− 1

R

(
dT −

√
RdR

R− 1

)2
+
RdR2

R− 1
+R2dΩ2

= −dT 2 +
(
dR+ dT/

√
R
)2

+R2dΩ2

2
a) The normal is best found given the constraint description of the hypersurface. It is

a2 = ηABz
AzB = const.

The normal is then found as

nA =
1

a
ηABz

B
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b)
ds2 = ηABdz

AdzB = − cosh(t/a)dt2 +
∑
A>0

(dzA)2

= − cosh2(t/a)dt2 + sinh2(t/a)dt2 + a2 cosh2(t/a)dΩ2
3

= −dt2 + a2 cosh2(t/a)dΩ2
3

This is of course, the de Sitter space time. It’s conformally flat and is a solution to the Einstein field equations in
vacuum with positive cosmological constant.

c)
Kαβ = eAαe

B
β ∇AnB = eAαe

B
β ∂AnB

= eAαe
B
β (

1

a
ηAB − 1

a2
zB∂Aa) =

1

a
eAαe

B
β ηAB =

1

a
gαβ

The other terms vanish because on the hypersurface, a is constant. Now let’s use the fully tangential component of
the Gauss-Codazzi relations; (equation 3.39). It reads

0 = Rαβµν +KανKβµ −KαµKβν

or

Rαβµν =
1

a2
(gαµgβν − gανgβµ)

3
a) The mass function is defined in the metric form

ds2 =
[
1−m(r)/2πr

]−1
dr2 + r2dΩ2

Comparison leads to

m = 2πr
[
1− (

dr

dl
)2
]

b) The constraint equation reads
3R = 4T (n, n)

Or, in terms of the mass function
dm

dr
= 4πr2ρ

The regularity at the origin imposes
m(0) = 0

Therefore

m(r) =
4

3
πr3ρ
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Putting this back to the differential equation connecting rand l, we find

r(l) =

√
3

2ρ
sin
(√2ρ

3
l
)

c, d) This is clear from the expression for r(l) that it can not go beyond

rmax =

√
3

2ρ

Then, since dm/dr > 0, the maximum mass is also achieved at maximum aerial radius, when the mass function
attains the value

m(r) = 2πrmax.

e) The metric is
ds2 = dl2 + r2max sin

2(l/rmax)dΩ
2
2

This space-time is symmetric under the discrete transformation

l → πrmax − l

Therefore, the l = πrmax is also a center of the polar coordinates where the area of the sphere vanishes and all
the Ω2 variables become irrelevant. This is exactly the descriptuion of a 3 sphere, S3. One just needs to define
ψ ≡ l/rmax to find

ds2 = r2maxdΩ
2
3

4
The condition [Kab] = 0 is clearly necessary for regularity of the Riemann tensor because of how the Gauss-Codazzi
equations relate some components of the Riemann tensor to the extrinsic curvature. It remains to show that
R(ea, n, eb, n) is also consistent if the extrinsic curvature is the same from both sides. Let ya be the local normal
coordinate system on the hypersurface and l be the orthogonal geodesic direction. Then, the only non-vanishing
metric derivative is

∂lgab = 2Kab

The Riemann component that we are after, then simplifies into

Rl
alb = ∂lΓ

l
ab − Γl

bcΓ
c
la

= −ε(∂lKab −KacK
c
b )

Clearly, this shows that if [Kab] = 0 is satisfied, the Riemann tensor will at most have a jump discontinuity and not
a delta function singulairty.
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5
Now that we have all of the components of the Riemann tensor, we may as well find the stress energy tensor
completely by following the standard procedure.

Tαβ =
1

2
Rµ

αµβ − 1

4
Rµν

µνgαβ

The answer will be
Tll =

1

4

(
− ε 3R+K2 −KabK

ab
)

Tla =
1

2
(DbKab −DaK)

Tab =
3T ab +

ε

4

[
2(2KacK

c
b − ∂lKab −KKab)− hab(3KabK

ab − 2∂lK −K2)
]

Now we can explicitly write

−ε[ja] = −εhab[Tlb] =
1

2
(Db[K

ab]−Da[K]) = DbS
ab ■

Let’s consider a timelike shell like z = 0. The t-component formula above asserts that the discontinuity in T tz, or
the mass flow across the shell is equal to the rate with which mass accumulates on the shell. The other components
of the formula are interpreted similarly.

6
I will work in the units where l0 = 1. Also, the tangent coordinates are (t, θ, φ). Topologically speaking, this is the
same as a stationary space with S3 topology. The space has two flattened hemispheres connected together via the
hypersurface.

a) Let’s start with finding the extrinsic curvature on both sides. The normal vector is

n = ∂l

The nonzero Christoffel symbols are
±Γl

θθ = ±r ; ±Γl
φφ = ±r sin2 θ

±Γθ
lθ = ±Γθ

θl =
±Γφ

lφ = ±Γφ
φl =

∓1

r

Γθ
φφ = − sin θ cos θ ; Γφ

θφ = Γφ
φθ = cot θ

From these, it follows that Kab is only nonzero for angular components.

±Kθθ = ∓1 ; ±Kφφ = ∓ sin2 θ

Then follows Sab:
Stt = 2 ; Sθθ = −1 ; Sφφ = − sin2 θ

This corresponds to a surface density σ, surface pressure p, and 4 velocity V as below

V = ∂t ; σ = 2 ; p = −1
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b) The null tangent vector is k = ∂t + ∂l. The expansion is

±θ = ∇αk
α = ∂αk

α + ±Γα
µαk

µ = ±Γα
lα =

∓2

r

This clearly changes sign from positive to negative as the geodesic crosses from the negative region to the positive
region.

c) Raychaudhuri’s equation is
dθ

dλ
= −BαβB

βα −Rµνk
µkν

Integrating this across the shell, it follows that

+θ − −θ = −
∫ 1+ε

1−ε

dl R(∂t + ∂l, ∂t + ∂l) = −2Sabk
akb = −2Stt = −4

Which is in accordance with the explicit result we found.

7
a) The first junction condition, implies that the hypersurface is described by functions

r− = r+ = R(τ) ; t− = t−(τ) ; t+ = t+(τ)

Where t± are defined via
dt±

dτ
=

1

1− r±S /R

√
1−

r±S
R

+ (dR/dτ)2

The induced metric and coordinates are as below

ds2Σ = −dτ2 +R2(τ)dΩ2
2

The normal form on each side is

n±µ = (−dR
dτ
,
dt±

dτ
, 0, 0)

And the tangent vectors are

eµτ = (
dt±

dτ
,
dR

dτ
, 0, 0) ; eµθ = (0, 0, 1, 0) ; eµφ = (0, 0, 0, 1)

Finding the angular components of the extrinsic curvature is not difficult

±Kθθ = ∇θnθ = R
√

1 + (dR/dτ)2 − r±S /R

±Kφφ = ±Kθθ sin
2 θ

The ττ component is way more cumbersome

Kττ = eµτ e
ν
τ∇µnν = eµτ ∂τnµ − Γα

µνe
µ
τ e

ν
τnα =

dR

dτ

d2t

dτ2
− d2R

dτ2
dt

dτ
+

3rS
2R(R− rS)

(
dR

dτ
)2
dt

dτ
− rS(R− rS)

2R3
(
dt

dτ
)3

In any case, the density and pressure are given by

σ =
−1

R2
[Kθθ] ; p =

1

2
(
1

R2
[Kθθ]− [Kττ ])
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And that means we need to prove
d[Kθθ]/dτ

[Kθθ]
− dR

Rdτ
= −RdR

dτ

[Kττ ]

[Kθθ]

b) Let

α± ≡ arcsin
r±S
R

Then

σ =
1

R
(cos θ− − cos θ+) > 0

p =
1

4R
(2 cos θ+ + tan θ+ − 2 cos θ− − tan θ−) > 0

8

9

Chapter 4

1
a) The EL equations are

∂L
∂Aα

= ∇β
∂L

∂∇βAα

Or
0 = −1

2
∇β

(
Fµν ∂Fµν

∂∇βAα

)
= −1

2
∇αF

µν(δβµδ
α
ν − δβν δ

α
µ ) = ∇βF

αβ ■

b)

Tαβ = gαβL − 2
∂L
∂gαβ

= FαµF
µ

β − 1

4
gαβF

µνFµν

2
a) The action is

S = −m
∫
dλ
√

−gαβ żαżβ

Then, the stress-energy tensor is

Tµν(x) =
−2√
−g(x)

δS

δgµν(x)
=

m√
−g(x)

∫
dλ

1√
−żαżα

żµżνδ(z
γ − xγ)

This is best re-written in terms of the 4 velocity of the particle as

Tµν = m

∫
dτ V µV ν δ(z, x)
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b) The conservation is equivalent to ∫
dx

√
−g Aβ∇αT

αβ = 0

where Aβ is any localized vector field. For a single particle, this is

0 =

∫
dx

√
−g Aβ∇αT

αβ = m

∫
dx

√
−g dτ Aβ(x)V

β(τ)V α(τ)∇αδ(z, x)

= −m
∫
dτ V αV β

∫
dx

√
−g δ(z, x)∇αAβ = −m

∫
dτ V αV β∇αAβ

= −m
∫
dτ V α∇α(V

βAβ) +m

∫
dτ AβV

α∇αV
β

= −m⟨V,A⟩
∣∣∣τ=+∞

τ=−∞
+m

∫
dτ AβV

α∇αV
β

= m

∫
dτ AβV

α∇αV
β

Which is equivalent to the geodesic equation.

c)

3
Let’s use the units in which rS = 1. The bulk action is zero since this is a vacuum solution. The extrinsic curvature
on the Σti are zero since the normals are killing fields. The non dynamical terms also cancel on the Σti by virtue
of symmetry. Therefore the action is

S = 2π(t2 − t1)r
2(Kr −K0)

∣∣∣R
ρ

Where

Kr −K0 =
1

2r2
√

1− 1/r
+

2
√

1− 1/r

r
− 2

r

This then gives

S(R, ρ, t1, t2) = π(t2 − t1)
[ 1√

1− 1/r
− 4r(1−

√
1− 1/r)

]∣∣∣R
ρ

and

lim
R→∞

S(R, ρ, t1, t2) = π(t2 − t1)
[
− 1− 1√

1− 1/ρ
+ 4ρ(1−

√
1− 1/ρ)

]

Chapter 5
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